Volume 109, Issue 1, Pages (July 2015)

Slides:



Advertisements
Similar presentations
Michiko Tashiro, Hana Inoue, Masato Konishi  Biophysical Journal 
Advertisements

Volume 111, Issue 7, Pages (October 2016)
Volume 88, Issue 1, Pages (January 2005)
Volume 96, Issue 10, Pages (May 2009)
Volume 106, Issue 12, Pages (June 2014)
Physical Properties of Escherichia coli Spheroplast Membranes
Volume 106, Issue 9, Pages L33-L35 (May 2014)
Lara Scharrel, Rui Ma, René Schneider, Frank Jülicher, Stefan Diez 
Dynamics of the Serine Chemoreceptor in the Escherichia coli Inner Membrane: A High- Speed Single-Molecule Tracking Study  Dongmyung Oh, Yang Yu, Hochan.
Susanne Karsch, Deqing Kong, Jörg Großhans, Andreas Janshoff 
Joseph M. Johnson, William J. Betz  Biophysical Journal 
Aleš Benda, Yuanqing Ma, Katharina Gaus  Biophysical Journal 
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
Quantifying Cell Adhesion through Impingement of a Controlled Microjet
Volume 104, Issue 5, Pages (March 2013)
Modes of Diffusion of Cholera Toxin Bound to GM1 on Live Cell Membrane by Image Mean Square Displacement Analysis  Pierre D.J. Moens, Michelle A. Digman,
Volume 98, Issue 8, Pages (April 2010)
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
Volume 101, Issue 7, Pages (October 2011)
Volume 110, Issue 3, Pages (February 2016)
Volume 96, Issue 7, Pages (April 2009)
Yong Wang, Paul Penkul, Joshua N. Milstein  Biophysical Journal 
Volume 114, Issue 5, Pages (March 2018)
Aida Ebrahimi, Laszlo N. Csonka, Muhammad A. Alam  Biophysical Journal 
Cholesterol Depletion Mimics the Effect of Cytoskeletal Destabilization on Membrane Dynamics of the Serotonin1A Receptor: A zFCS Study  Sourav Ganguly,
Actin Cytoskeleton-Dependent Dynamics of the Human Serotonin1A Receptor Correlates with Receptor Signaling  Sourav Ganguly, Thomas J. Pucadyil, Amitabha.
Volume 97, Issue 1, Pages (July 2009)
Mechanics and Buckling of Biopolymeric Shells and Cell Nuclei
V. Vetri, G. Ossato, V. Militello, M.A. Digman, M. Leone, E. Gratton 
Probing Red Blood Cell Morphology Using High-Frequency Photoacoustics
Volume 114, Issue 12, Pages (June 2018)
Abir M. Kabbani, Christopher V. Kelly  Biophysical Journal 
Cell Optical Density and Molecular Composition Revealed by Simultaneous Multimodal Label-Free Imaging  Nicolas Pavillon, Alison J. Hobro, Nicholas I.
Jan Ribbe, Berenike Maier  Biophysical Journal 
Volume 112, Issue 8, Pages (April 2017)
Membrane Tethered Delta Activates Notch and Reveals a Role for Spatio-Mechanical Regulation of the Signaling Pathway  Yoshie Narui, Khalid Salaita  Biophysical.
Volume 97, Issue 1, Pages (July 2009)
Cell Surface Topography Is a Regulator of Molecular Interactions during Chemokine- Induced Neutrophil Spreading  Elena. B. Lomakina, Graham Marsh, Richard E.
Volume 103, Issue 10, Pages (November 2012)
Volume 100, Issue 7, Pages (April 2011)
Lipid Headgroups Modulate Membrane Insertion of pHLIP Peptide
Volume 106, Issue 1, Pages (January 2014)
Volume 105, Issue 9, Pages (November 2013)
Jonathan P. Litz, Niket Thakkar, Thomas Portet, Sarah L. Keller 
Volume 99, Issue 8, Pages (October 2010)
K. Venkatesan Iyer, S. Pulford, A. Mogilner, G.V. Shivashankar 
Volume 84, Issue 1, Pages (January 2003)
Volume 99, Issue 8, Pages (October 2010)
Satomi Matsuoka, Tatsuo Shibata, Masahiro Ueda  Biophysical Journal 
Volume 111, Issue 6, Pages (September 2016)
On the Role of Acylation of Transmembrane Proteins
Volume 113, Issue 12, Pages (December 2017)
Volume 104, Issue 10, Pages (May 2013)
Arisa Uemura, Thuc-Nghi Nguyen, Amanda N. Steele, Soichiro Yamada 
Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane  Jonathan M. Crane, A.S. Verkman  Biophysical.
Abir M. Kabbani, Christopher V. Kelly  Biophysical Journal 
Maria Goiko, John R. de Bruyn, Bryan Heit  Biophysical Journal 
Volume 103, Issue 11, Pages (December 2012)
Ruth D. Taylor, Martin Heine, Nigel J. Emptage, Laura C. Andreae 
Emily I. Bartle, Tara M. Urner, Siddharth S. Raju, Alexa L. Mattheyses 
Christina Ketchum, Heather Miller, Wenxia Song, Arpita Upadhyaya 
Hydrodynamic Determinants of Cell Necrosis and Molecular Delivery Produced by Pulsed Laser Microbeam Irradiation of Adherent Cells  Jonathan L. Compton,
ECM Cross-Linking Regulates Invadopodia Dynamics
How Cells Tiptoe on Adhesive Surfaces before Sticking
Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell
Anil K. Dasanna, Christine Lansche, Michael Lanzer, Ulrich S. Schwarz 
Probing the Endocytic Pathway in Live Cells Using Dual-Color Fluorescence Cross- Correlation Analysis  Kirsten Bacia, Irina V. Majoul, Petra Schwille 
George D. Dickinson, Ian Parker  Biophysical Journal 
Sandeep Kumar, Alakesh Das, Amlan Barai, Shamik Sen 
Presentation transcript:

Volume 109, Issue 1, Pages 85-94 (July 2015) Cholesterol Modulates CFTR Confinement in the Plasma Membrane of Primary Epithelial Cells  Asmahan Abu-Arish, Elvis Pandzic, Julie Goepp, Elizabeth Matthes, John W. Hanrahan, Paul W. Wiseman  Biophysical Journal  Volume 109, Issue 1, Pages 85-94 (July 2015) DOI: 10.1016/j.bpj.2015.04.042 Copyright © 2015 Biophysical Society Terms and Conditions

Figure 1 CFTR distribution on the plasma membrane of primary HBE cells. A fluorescence confocal microscope image of GFP-CFTR in the plasma membrane of a live HBE cell reveals two populations; one comprised of bright clusters that are homogeneously distributed (arrow on right) and another more diffuse population (arrow on left). To see this figure in color, go online. Biophysical Journal 2015 109, 85-94DOI: (10.1016/j.bpj.2015.04.042) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 2 CFTR CD and DA in the plasma membrane as measured by spatial ICS are strongly cholesterol dependent. CD and DA were normalized to their control values, the CD ratio and the DA ratio, respectively. In the COase condition, cholesterol loss increased the CFTR CD by 30% and decreased the DA by 35% (p < 0.01). Elevating cholesterol in the membrane using CEase reduced the CD by twofold and increased the DA by threefold (p < 0.01). Error bars indicate the mean ± SE. Biophysical Journal 2015 109, 85-94DOI: (10.1016/j.bpj.2015.04.042) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 3 CFTR distribution in the plasma membrane depends on membrane cholesterol. (a) A confocal microscope image of GFP-CFTR in an ROI on the plasma membrane of live HBE cells under Ctr conditions. (b) After lipid raft disruption (+COase). (c) After membrane cholesterol insertion (+CEase). (d) After acute viral infection (+adenovirus). To see this figure in color, go online. Biophysical Journal 2015 109, 85-94DOI: (10.1016/j.bpj.2015.04.042) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 4 CFTR macro- and microdynamics and distribution on the plasma membrane are cholesterol dependent. (a) The average macroscale MSD, Dmacroτ, increased linearly as a function of τ for control (Ctr, black) and COase-treated cells (gray). The slope, Dmacro, is the macro diffusion coefficient of unconfined CFTR. (b) The average microscale MSD, Dmicroτ, increased linearly for the first few temporal lags and dramatically changed its slope at a later τ for both conditions. The first three temporal lags were fit with straight lines, as shown, yielding a slope, Dmicro, that describes the mobility of the CFTR population inside confinements. COase treatment resulted in a larger Dmicro compared to the Ctr condition, indicating a weaker trap. (c) The average amplitudes of the macro- (ϕmacro, line) and microcomponents (ϕmicro, solid circles) of the k-space correlation function as a function of τ. For ncell averages, see Table 1. Error bars indicate the mean ± SE. Biophysical Journal 2015 109, 85-94DOI: (10.1016/j.bpj.2015.04.042) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 5 CFTR macro- and microdynamics and distribution on the plasma membrane are cholesterol dependent. (a) Both Dmacro and Dmicro of CFTR increased significantly after cholesterol depletion from the membrane (+COase) and decreased significantly after cholesterol augmentation (+CEase). (b) Gray bars indicate the unconfined population fraction, fmacro, increased by cholesterol loss (+COase) and decreased after cholesterol insertion (+CEase). Black bars indicate the confined population fraction of CFTR, fmicro, decreased significantly after COase and increased significantly after CEase. Error bars indicate the mean ± SE. Biophysical Journal 2015 109, 85-94DOI: (10.1016/j.bpj.2015.04.042) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 6 CFTR dynamics and distribution after acute viral infection. (a) Both the Dmacro and Dmicro of CFTR decreased significantly after the infection. (b) Although the unconfined population fraction, fmacro, decreased significantly postinfection (gray), the confined population fraction, fmicro, increased by twofold (black). This indicates recruitment of CFTR to confinement zones during infection. Error bars indicate the mean ± SE. Biophysical Journal 2015 109, 85-94DOI: (10.1016/j.bpj.2015.04.042) Copyright © 2015 Biophysical Society Terms and Conditions