Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro

Slides:



Advertisements
Similar presentations
Figure 4 PET imaging in experimental pancreatic cancer
Advertisements

Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Exosome composition
Figure 4 Activation of clopidogrel via cytochrome P450
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 7 Treatment algorithm for perianal fistulizing disease
Figure 6 Injection of mesenchymal stem cells in perianal fistulas
Figure 1 Gut microorganisms at the intersection of several diseases
Figure 5 Lipid droplet consumption
Figure 1 Suppression of SLC22A3 and A-to-I editing
Figure 1 Worldwide incidence of CCA
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 The microbiome–gut–brain axis
Figure 3 The T-cell cytokine tree in IBD
Figure 1 Organs involved in coeliac-disease-associated autoimmunity
Figure 5 Exosomes for delivery of RNA interference therapeutics
Figure 1 Towards precision PRRT for neuroendocrine tumours
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Figure 3 The 'leaky gut' hypothesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Giant lipid droplet formation
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Suggested biopsy-avoiding diagnostic pathway for coeliac disease Figure 1 | Suggested biopsy-avoiding diagnostic pathway for coeliac disease.
Figure 6 Combination therapy for HCC
Figure 4 Proinflammatory immune cells and their crosstalk in patients with IBD Figure 4 | Proinflammatory immune cells and their crosstalk in patients.
Figure 1 Definition and concept of ACLF
Figure 1 Functions, features and phenotypes of HSCs in normal and diseased livers Figure 1 | Functions, features and phenotypes of HSCs in normal and diseased.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Exosomes with siRNAs targeting
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
to the liver and promote patient-derived xenograft tumour growth
Figure 1 Environmental factors contributing to IBD pathogenesis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Clinical algorithms in the management of NASH and diabetes mellitus Figure 3 | Clinical algorithms in the management of NASH and diabetes mellitus.
Figure 1 Median coverage and distribution by
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Figure 5 Chrononutrition in the liver
Figure 3 Mechanisms of NS5B-mediated RNA synthesis
Figure 4 Diverse molecular mechanisms of long non-coding RNAs
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Possible therapeutic targets to decrease hepatic steatosis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Strategies to improve liver regeneration
Figure 3 Examples of gene expression heterogeneity
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 5 Systems biological model of IBS
Volume 155, Issue 6, Pages (December 2018)
Figure 3 Enrichment strategies for clinical trials
Figure 4 Local species pools that contribute to the
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 The spread of colorectal cancer metastases
Presentation transcript:

Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2015.215 Figure 1 Complementary experimental systems can elucidate diagnostic and prognostic biomarkers for pancreatic cancer Figure 1 | Complementary experimental systems can elucidate diagnostic and prognostic biomarkers for pancreatic cancer. Pancreatic cancer research is multi-layered, with many different approaches possible to understand the disease. An integrated approach, incorporating data from across multiple complex experimental systems, each burdened with limitations if used as a standalone system, will speed up the identification of biomarkers for pancreatic cancer. CIBERSORT, Cell type Identification By Estimating Relative Subsets Of known RNA Transcripts; PRECOG, PREdiction of Clinical Outcomes from Genomic Profiles. Seufferlein, T. & Mayerle, J. (2016) Precision medicine in pancreatic cancer — fact or fiction? Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2015.215