EEC-484/584 Computer Networks

Slides:



Advertisements
Similar presentations
Transport Layer 3-1 Transport services and protocols  provide logical communication between app processes running on different hosts  transport protocols.
Advertisements

Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture Electronic Mail: SMTP, POP3, IMAP DNS Socket programming with TCP.
EEC-484/584 Computer Networks Lecture 6 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
1 Outline r Transport-layer services r Multiplexing and demultiplexing r Connectionless transport: UDP r Principles of reliable data transfer.
Transport Layer3-1 Data Communication and Networks Lecture 6 Reliable Data Transfer October 12, 2006.
Announcement Project 1 due last night, how is that ? Project 2 almost ready, out tomorrow, will post online –Much harder than project 1, start early!
Chapter 3 Transport Layer slides are modified from J. Kurose & K. Ross CPE 400 / 600 Computer Communication Networks Lecture 9.
Transport Layer3-1 Reliable Data Transfer. Transport Layer3-2 Principles of Reliable data transfer r important in app., transport, link layers r top-10.
3-1 Sect. 3.4 Principles of reliable data transfer Computer Networking: A Top Down Approach Featuring the Internet, 1 st edition. Jim Kurose, Keith Ross.
1 Internet transport-layer protocols r reliable, in-order delivery (TCP) m congestion control m flow control m connection setup r unreliable, unordered.
Some slides are in courtesy of J. Kurose and K. Ross Review of Previous Lecture r Transport-layer services r Multiplexing and demultiplexing r Connectionless.
Announcement Homework 1 due last night, how is that ? –Will discuss some problems in the lecture next week Should have completed at least part II of project.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
9/30/ /2/2003 The Transport Layer September 30-October 2, 2003.
1 Transport Layer goals: r understand principles behind transport layer services: m multiplexing/demultiplexing m reliable data transfer m flow control.
Transport Layer3-1 Data Communication and Networks Lecture 5  Transport Protocols: Multiplexing and Reliable Data Transfer October 7, 2004.
Reliable Data Transfer#1#1 Reliable Data Transfer.
Previous Lecture r P2P file sharing r Socket programming with TCP r Socket programming with UDP.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 
CSCI 3335: C OMPUTER N ETWORKS C HAPTER 3 T RANSPORT L AYER Vamsi Paruchuri University of Central Arkansas Some.
Transport Layer 3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter3_1.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
14-1 Last time □ Mobility in Cellular networks ♦ HLR, VLR, MSC ♦ Handoff □ Transport Layer ♦ Introduction ♦ Multiplexing / demultiplexing ♦ UDP.
Transport Layer 3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m sockets m reliable data transfer m.
Transport Layer3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m multiplexing/demultipl exing m reliable.
1 of 44 Week 2 Lecture 2 – Network Layers Transport Layer – Example: TCP/UDP.
Lecture91 Administrative Things r Return homework # 1 r Review some problems in homework # 1 r Questions about grading? Yona r WebCT for CSE245 is working!
CS 3830 Day 15 Introduction 1-1. Announcements r Quiz 3: Wednesday, Oct 10 r Prog3 due (in 1DropBox) on Wednesday, Oct 10 r Prog4: m Parts A and B m Work.
Part 3: Transport Layer: Reliable Data Transfer CSE 3461/5461 Reading: Section 3.4, Kurose and Ross 1.
Transport Layer3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and demultiplexing r 3.3 Connectionless transport: UDP r 3.4 Principles.
Transport Layer 3-1 Chapter 3 outline 3.4 Principles of reliable data transfer.
September 24 th, 2013 CS1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights.
1 John Magee 10 February 2014 CS 280: Transport Layer: Reliable Data Transfer Most slides adapted from Kurose and Ross, Computer Networking 6/e Source.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Transport Layer 3-1 Chapter 3: Transport Layer Our goals: r understand principles behind transport layer services: m Multiplexing/demultip lexing m reliable.
Transport Layer Our goals:
1 CSCD 330 Network Programming Some Material in these slides from J.F Kurose and K.W. Ross All material copyright Lecture 9 Transport Layer Winter.
Transport Layer3-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Application Layer 2-1 Chapter 3 Transport Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012.
Introduction 1 Lecture 11 Transport Layer (Reliable Data Transfer) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science.
Chapter 3 Transport Layer
Chapter 3 outline 3.1 transport-layer services
Session 8 INST 346 Technologies, Infrastructure and Architecture
Advanced Networks Transport layer 1/2 Dr Vincent Gramoli | Lecturer
Reliable Data Transfer Reliable Data Transfer.
Chapter 3 Transport Layer
Chapter 3: Transport Layer
Transport Layer Our goals:
EEC-484/584 Computer Networks
Chapter 3: Transport Layer
Chapter 3: Transport Layer
Transport Layer Our goals:
Chapter 3 outline 3.1 Transport-layer services
EEC-484/584 Computer Networks
CSCD 330 Network Programming
EEC-484/584 Computer Networks
Chapter 3 Transport Layer
EEC-484/584 Computer Networks
EEC-484/584 Computer Networks
Chapter 3 outline 3.1 transport-layer services
EEC-484 Computer Networks
Chapter 3 Transport Layer
Never take life seriously. Nobody gets out alive anyway
Chapter 3: Transport Layer
EEC-484/584 Computer Networks
Chapter 3: Transport Layer
EEC-484/584 Computer Networks
Chapter 3: Transport Layer
CS 5565 Network Architecture and Protocols
Chapter 3: Transport Layer
Presentation transcript:

EEC-484/584 Computer Networks Lecture 6 Wenbing Zhao wenbingz@gmail.com (Part of the slides are based on Drs. Kurose & Ross’s slides for their Computer Networking book)

EEC-484/584: Computer Networks Outline Quiz#1 result Introduction to transport layer Multiplexing/demultiplexing Reliable data transfer 1/3/2019 EEC-484/584: Computer Networks

EEC-484/584: Computer Networks EEC584 (S1) Quiz#1 Result High 100, low 30, average: 73.5 Q1: 37.5/50, Q2: 6.3/10, Q3: 15.3/20, Q4: 14.4/20 1/3/2019 EEC-484/584: Computer Networks Wenbing Zhao

EEC-484/584: Computer Networks EEC584 (S2) Quiz#1 Result High 100, low 71, average: 84 Q1: 39/50, Q2: 9.3/10, Q3: 16.1/20, Q4: 19.4/20 1/3/2019 EEC-484/584: Computer Networks Wenbing Zhao

EEC-484/584: Computer Networks Transport Layer Our goals: Understand principles behind transport layer services: multiplexing/ demultiplexing reliable data transfer flow control congestion control Learn about transport layer protocols in the Internet: UDP: connectionless transport TCP: connection-oriented transport TCP congestion control 1/3/2019 EEC-484/584: Computer Networks

Internet Transport-Layer Protocols Reliable, in-order delivery (TCP) congestion control flow control connection setup Unreliable, unordered delivery: UDP no-frills extension of “best-effort” IP Services not available: delay guarantees bandwidth guarantees application transport network data link physical network data link physical network data link physical network data link physical logical end-end transport network data link physical network data link physical application transport network data link physical 1/3/2019 EEC-484/584: Computer Networks

Multiplexing/Demultiplexing Multiplexing at send host: Demultiplexing at rcv host: delivering received segments to correct socket gathering data from multiple sockets, enveloping data with header (later used for demultiplexing) = socket = process application application P4 Ip enables comm between host and host application P3 P1 P1 P2 transport transport transport network network network link link link physical physical physical host 3 host 1 host 2 1/3/2019 EEC-484/584: Computer Networks

How Demultiplexing Works Host receives IP datagrams Each datagram has source IP address, destination IP address Each datagram carries 1 transport-layer segment Each segment has source, destination port number Host uses IP addresses & port numbers to direct segment to appropriate socket 32 bits source port # dest port # other header fields application data (message) TCP/UDP segment format 1/3/2019 EEC-484/584: Computer Networks

Connectionless Demultiplexing When host receives UDP segment: checks destination port number in segment directs UDP segment to socket with that port number IP datagrams with different source IP addresses and/or source port numbers directed to same socket Create sockets with port numbers: DatagramSocket mySocket1 = new DatagramSocket(12534); DatagramSocket mySocket2 = new DatagramSocket(12535); UDP socket identified by two-tuple: (dest IP address, dest port number) 1/3/2019 EEC-484/584: Computer Networks

EEC-484/584: Computer Networks Connectionless Demux DatagramSocket serverSocket = new DatagramSocket(6428); Client IP:B P2 client IP: A P1 P3 server IP: C SP: 6428 DP: 9157 SP: 9157 DP: 6428 DP: 5775 SP: 5775 SP provides “return address” 1/3/2019 EEC-484/584: Computer Networks

Connection-Oriented Demux TCP socket identified by 4-tuple: source IP address source port number dest IP address dest port number recv host uses all four values to direct segment to appropriate socket Server host may support many simultaneous TCP sockets: each socket identified by its own 4-tuple Web servers have different sockets for each connecting client non-persistent HTTP will have different socket for each request 1/3/2019 EEC-484/584: Computer Networks

Connection-Oriented Demux P1 client IP: A P4 P5 P6 P2 P1 P3 DP: 80 SP: 5775 S-IP: B D-IP:C SP: 9157 SP: 9157 DP: 80 DP: 80 Client IP:B server IP: C S-IP: A S-IP: B D-IP:C D-IP:C 1/3/2019 EEC-484/584: Computer Networks

Connection-oriented demux: Multi-Threaded Web Server P1 client IP: A P4 P2 P1 P3 SP: 5775 DP: 80 S-IP: B D-IP:C SP: 9157 SP: 9157 DP: 80 DP: 80 Client IP:B server IP: C S-IP: A S-IP: B D-IP:C D-IP:C 1/3/2019 EEC-484/584: Computer Networks

Principles of Reliable Data Transfer Important in app., Transport, link layers Top-10 list of important networking topics! Characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt) 1/3/2019 EEC-484/584: Computer Networks

Reliable Data Transfer: Getting Started rdt_send(): called from above, (e.g., by app.). Passed data to deliver to receiver upper layer deliver_data(): called by rdt to deliver data to upper send side receive side udt_send(): called by rdt, to transfer packet over unreliable channel to receiver rdt_rcv(): called when packet arrives on rcv-side of channel 1/3/2019 EEC-484/584: Computer Networks

Reliable Data Transfer: Getting Started We’ll: Incrementally develop sender, receiver sides of reliable data transfer protocol (rdt) Consider only unidirectional data transfer but control info will flow on both directions! Use finite state machines (FSM) to specify sender, receiver event causing state transition actions taken on state transition state 1 state: when in this “state” next state uniquely determined by next event state 2 event actions 1/3/2019 EEC-484/584: Computer Networks

rdt1.0: reliable transfer over a reliable channel Underlying channel perfectly reliable No bit errors No loss of packets Separate fsms for sender, receiver: Sender sends data into underlying channel Receiver read data from underlying channel rdt_rcv(packet) Wait for call from above rdt_send(data) Wait for call from below extract (packet,data) deliver_data(data) packet = make_pkt(data) udt_send(packet) sender receiver 1/3/2019 EEC-484/584: Computer Networks

rdt2.0: channel with bit errors Underlying channel may flip bits in packet Checksum to detect bit errors The question: how to recover from errors: Acknowledgements (acks): receiver explicitly tells sender that pkt received OK Negative acknowledgements (naks): receiver explicitly tells sender that pkt had errors Sender retransmits pkt on receipt of NAK New mechanisms in rdt2.0 (beyond rdt1.0): Error detection Receiver feedback: control msgs (ACK,NAK) rcvr->sender 1/3/2019 EEC-484/584: Computer Networks

rdt2.0: FSM specification rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) receiver rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for ACK or NAK Wait for call from above udt_send(NAK) rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(sndpkt) rdt_rcv(rcvpkt) && isACK(rcvpkt) Wait for call from below L sender rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK) 1/3/2019 EEC-484/584: Computer Networks

rdt2.0: operation with no errors rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for ACK or NAK Wait for call from above udt_send(NAK) rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(sndpkt) rdt_rcv(rcvpkt) && isACK(rcvpkt) Wait for call from below L rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK) 1/3/2019 EEC-484/584: Computer Networks

rdt2.0: error scenario L rdt_send(data) snkpkt = make_pkt(data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && isNAK(rcvpkt) Wait for ACK or NAK Wait for call from above udt_send(NAK) rdt_rcv(rcvpkt) && corrupt(rcvpkt) udt_send(sndpkt) rdt_rcv(rcvpkt) && isACK(rcvpkt) Wait for call from below L rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) extract(rcvpkt,data) deliver_data(data) udt_send(ACK) 1/3/2019 EEC-484/584: Computer Networks

EEC-484/584: Computer Networks rdt2.0 has a fatal flaw! What happens if ACK/NAK corrupted? sender doesn’t know what happened at receiver! can’t just retransmit: possible duplicate Handling duplicates: sender retransmits current pkt if ACK/NAK garbled sender adds sequence number to each pkt receiver discards (doesn’t deliver up) duplicate pkt Stopped here 2/22/12 stop and wait Sender sends one packet, then waits for receiver response 1/3/2019 EEC-484/584: Computer Networks

rdt2.1: sender handles garbled ACK/NAKs rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isNAK(rcvpkt) ) Wait for ACK or NAK 0 Wait for call 0 from above udt_send(sndpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt) L L Wait for ACK or NAK 1 Wait for call 1 from above rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isNAK(rcvpkt) ) rdt_send(data) sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt) udt_send(sndpkt) 1/3/2019 EEC-484/584: Computer Networks

rdt2.1: receiver handles garbled packets rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq0(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && (corrupt(rcvpkt) rdt_rcv(rcvpkt) && (corrupt(rcvpkt) sndpkt = make_pkt(NAK, chksum) udt_send(sndpkt) sndpkt = make_pkt(NAK, chksum) udt_send(sndpkt) Stopped here 9/28/2009 Wait for 0 from below Wait for 1 from below rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq1(rcvpkt) rdt_rcv(rcvpkt) && not corrupt(rcvpkt) && has_seq0(rcvpkt) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK, chksum) udt_send(sndpkt) 1/3/2019 EEC-484/584: Computer Networks

EEC-484/584: Computer Networks rdt2.1: discussion Sender: seq # added to pkt two seq. #’s (0,1) will suffice. Why? must check if received ACK/NAK corrupted twice as many states state must “remember” whether “current” pkt has 0 or 1 seq. # Receiver: must check if received packet is duplicate state indicates whether 0 or 1 is expected pkt seq # note: receiver can not know if its last ACK/NAK received OK at sender 1/3/2019 EEC-484/584: Computer Networks

rdt2.2: a NAK-free protocol Same functionality as rdt2.1, using acks only Instead of NAK, receiver sends ACK for last pkt received OK Receiver must explicitly include seq # of pkt being acked Duplicate ACK at sender results in same action as NAK: retransmit current pkt 1/3/2019 EEC-484/584: Computer Networks

rdt2.2: sender, receiver fragments rdt_send(data) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isACK(rcvpkt,1) ) Wait for ACK Wait for call 0 from above udt_send(sndpkt) sender FSM fragment rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,0) rdt_rcv(rcvpkt) && (corrupt(rcvpkt) || has_seq1(rcvpkt)) L Wait for 0 from below receiver FSM fragment udt_send(sndpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && has_seq1(rcvpkt) extract(rcvpkt,data) deliver_data(data) sndpkt = make_pkt(ACK1, chksum) udt_send(sndpkt) 1/3/2019 EEC-484/584: Computer Networks

rdt3.0: channels with errors and loss New assumption: underlying channel can also lose packets (data or acks) Checksum, seq. #, Acks, retransmissions will be of help, but not enough Approach: sender waits “reasonable” amount of time for ACK Retransmits if no ACK received in this time If pkt (or ACK) just delayed (not lost): Retransmission will be duplicate, but use of seq. #’S already handles this Receiver must specify seq # of pkt being acked Requires countdown timer 1/3/2019 EEC-484/584: Computer Networks

EEC-484/584: Computer Networks rdt3.0 sender rdt_send(data) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isACK(rcvpkt,1) ) sndpkt = make_pkt(0, data, checksum) udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) L L Wait for call 0from above Wait for ACK0 timeout udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,1) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) && isACK(rcvpkt,0) stop_timer stop_timer Wait for ACK1 Wait for call 1 from above timeout udt_send(sndpkt) start_timer rdt_rcv(rcvpkt) L rdt_send(data) rdt_rcv(rcvpkt) && ( corrupt(rcvpkt) || isACK(rcvpkt,0) ) sndpkt = make_pkt(1, data, checksum) udt_send(sndpkt) start_timer L 1/3/2019 EEC-484/584: Computer Networks

EEC-484/584: Computer Networks rdt3.0 in action 1/3/2019 EEC-484/584: Computer Networks

EEC-484/584: Computer Networks rdt3.0 in action 1/3/2019 EEC-484/584: Computer Networks

EEC-484/584: Computer Networks Performance of rdt3.0 rdt3.0 works, but performance stinks ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet: U sender: utilization – fraction of time sender busy sending 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link network protocol limits use of physical resources! 1/3/2019 EEC-484/584: Computer Networks

rdt3.0: stop-and-wait operation sender receiver first packet bit transmitted, t = 0 last packet bit transmitted, t = L / R first packet bit arrives RTT last packet bit arrives, send ACK ACK arrives, send next packet, t = RTT + L / R 1/3/2019 EEC-484/584: Computer Networks