How well do we model marine aerosols, and why?

Slides:



Advertisements
Similar presentations
SOLAS Dust workshop (Reading) Overview of dust modelling from Leeds global aerosol group Graham Mann, Ken Carslaw, Dominick Spracklen,
Advertisements

Whitecaps, sea-salt aerosols, and climate Magdalena D. Anguelova Physical Oceanography Dissertation Symposium College of Marine Studies, University of.
Global, Regional, and Urban Climate Effects of Air Pollutants Mark Z. Jacobson Dept. of Civil & Environmental Engineering Stanford University.
Emissions From The Oceans To The Atmosphere Deposition From The Atmosphere To The Oceans And The Interactions Between Them Tim Jickells Laboratory for.
Simulating the Impacts of Marine Organic Emissions on Global Atmospheric Chemistry and Climate using an Online-Coupled Meteorology and Chemistry Model.
Global Constraints on Biogenic Particles Goldschmidt Conference August 19, 2011 Colette L. Heald Photo courtesy: Cam McNaughton (taken from NASA’s DC-8)
Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009 Geophysical Fluid Dynamics Laboratory Review June 30 - July 2, 2009.
Sensitivity of cloud droplet nucleation to kinetic effects and varying updraft velocity Ulrike Lohmann, Lisa Phinney and Yiran Peng Department of Physics.
 Similar picture from MODIS and MISR aerosol optical depth (AOD)  Both biomass and dust emissions in the Sahel during the winter season  Emissions.
SATELLITE OBSERVATIONS OF ATMOSPHERIC AEROSOLS:
Clouds and Climate: Forced Changes to Clouds SOEE3410 Ken Carslaw Lecture 4 of a series of 5 on clouds and climate Properties and distribution of clouds.
Using satellite observations to investigate natural aerosol loading Colette L. Heald David A. Ridley, Kateryna Lapina UPMC Paris March 22, 2011.
Meteorological Service of Canada Environment Canada The Global Cycling Of Size- distributed Sea-salt Particles And Their Influence On Sulphate Aerosols.
Second ICAP Workshop Aerosol Modeling using the GISS modelE Sophia Zhang, Dorothy Koch, Susanna Bauer, Reha Cakmur, Ron Miller, Jan Perlwitz Nadine Bell.
Investigating Organic Aerosol Loading in the Remote Marine Environment Kateryna Lapina Colette Heald, Dominick Spracklen, Steve.
Using satellite observations to investigate natural aerosol loading Colette L. Heald David A. Ridley, Kateryna Lapina EGU April 5, 2011.
Investigating Organic Aerosol Loading in the Remote Marine Environment K. Lapina 1, ), C. L. Heald 1, D. V. Spracklen 2, S.
The Contribution of Marine Organic Emissions to Coastal Air Quality Brett Gantt Advisor: Nicholas Meskhidze Co-Author: Annmarie Carlton (EPA) North Carolina.
Aerosols and climate Rob Wood, Atmospheric Sciences.
Using satellite-bourne instruments to diagnose the indirect effect A review of the capabilities and previous studies.
Clouds and Climate: Forced Changes to Clouds SOEE3410 Ken Carslaw Lecture 4 of a series of 5 on clouds and climate Properties and distribution of clouds.
Implementing Online Marine Organic Aerosol Emissions into GEOS-Chem Implementing Online Marine Organic Aerosol Emissions into GEOS-Chem NASA Ames Research.
Effects of size resolved aerosol microphysics on photochemistry and heterogeneous chemistry Gan Luo and Fangqun Yu ASRC, SUNY-Albany
(#694) Monitoring the Hawaii Volcano Plume From Satellite By John Porter School of Ocean Earth Science and Technology, University of Hawaii, Honolulu,
Global Simulation of the Indirect Aerosol Effect With the ECHAM5 GCM III LBA Scientific Conference Brasilia 28/07/2004 P. Stier (1), J. Feichter (1), S.
Marine Organics and Sea Spray Aerosol Water Uptake
(Impacts are Felt on Scales from Local to Global) Aerosols Link Climate, Air Quality, and Health: Dirtier Air and a Dimmer Sun Emissions Impacts == 
School of something FACULTY OF OTHER 1 Lecture 2: Aerosol sources and sinks Ken Carslaw.
Aerosol effect on cloud cover and cloud height Kaufman, Koren, Remer, Rosenfeld & Martins.
Introduction Invisible clouds in this study mean super-thin clouds which cannot be detected by MODIS but are classified as clouds by CALIPSO. These sub-visual.
Fluxes of bio-available iron to the ocean ○ Akinori Ito Research Institute for Global Change, JAMSTEC Yan Feng Scripps Institution of Oceanography, University.
DYNAMO Webinar Series Dynamics of the Madden-Julian Oscillation Field Campaign Climate Variability & Predictability.
Operational assimilation of dust optical depth Bruce Ingleby, Yaswant Pradhan and Malcolm Brooks © Crown copyright 08/2013 Met Office and the Met Office.
Progress on Application of Modal Aerosol Dynamics to CAM Xiaohong Liu, Steve Ghan, Richard Easter, Rahul Zaveri, Yun Qian (Pacific Northwest National.
New Measurements of Hygroscopicity- & Size-Resolved Particle Fluxes Brittany Phillips, K. Dawson, T. Royalty, R. Reed, M. D. Petters, and N. Meskhidze.
GLOBAL SULFUR BUDGET [Chin et al., 1996] (flux terms in Tg S yr -1 ) Phytoplankton (CH 3 ) 2 S SO 2  1.3d DMS  1.0d OHNO 3 Volcanoes Combustion.
Whitecaps, sea-salt aerosols, and climate Magdalena D. Anguelova Oceans and Ice Branch Seminar College of Marine Studies University of Delaware18 October,
Representation of Sea Salt Aerosol in CAM coupled with a Sectional Aerosol Microphysical Model CARMA Tianyi Fan, Owen Brian Toon LASP/ATOC, University.
Dust Modeling at the NASA Goddard Institute for Space Studies Ron Miller, Susanne Bauer, Reha Cakmur, Jan Perlwitz, Peng Xian.
Gradient flux measurements at Mace Head Darius Ceburnis, School of Physics, National University of Ireland Galway, Ireland Marine submicron aerosol sources,
Betty Croft, and Randall V. Martin – Dalhousie University, Canada
Numerical simulations of optical properties of nonspherical dust aerosols using the T-matrix method Hyung-Jin Choi School.
The use of satellite data in marine aerosol studies: future perspectives, challenges, development needs Gerrit de Leeuw Finnish Meteorological Institute.
Recent activities on aerosols in TM5 Achim Strunk Twan van Noije, Michiel van Weele AeroCom-2 contribution by KNMI Preliminary source sink analysis Online.
Global budget and radiative forcing of black carbon aerosol: constraints from pole-to-pole (HIPPO) observations across the Pacific Qiaoqiao Wang, Daniel.
Extending Size-Dependent Composition to the Modal Approach: A Case Study with Sea Salt Aerosol Uma Shankar and Rohit Mathur The University of North Carolina.
Measurements of Ocean Derived Aerosol off the Coast of California T.S. Bates, P.K. Quinn, A. Frossard, L.M. Russell, D.J. Kieber, J. Hakala, and W.C. Keene.
Dust aerosols in NU-WRF – background and current status Mian Chin, Dongchul Kim, Zhining Tao.
Aerosol Radiative Forcing from combined MODIS and CERES measurements
GEOS-CHEM Activities at NIA Hongyu Liu National Institute of Aerospace (NIA) at NASA LaRC June 2, 2003.
AEROCOM AODs are systematically smaller than MODIS, with slightly larger/smaller differences in winter/summer. Aerosol optical properties are difficult.
Near-term climate forcers and climate policy: methane and black carbon Daniel J. Jacob.
Modal Aerosol Treatment in CAM: Evaluation and Indirect Effect X. Liu, S. J. Ghan, R. Easter (PNNL) J.-F. Lamarque, P. Hess, N. Mahowald, F. Vitt, H. Morrison,
1 Y. Kaufman, L. Remer, M. Chin, NASA; Didier Tanré, CNRS, Univ. of Lille Aerosol measurements & models MODIS & AERONET vs. GOCART.
CONSTRAINTS FROM RGM MEASUREMENTS ON GLOBAL MERCURY CHEMISTRY Noelle Eckley Selin 1 Daniel J. Jacob 1, Rokjin J. Park 1, Robert M. Yantosca 1, Sarah Strode,
Presented by: Robyn D. Williams EAS 6410 April 19, 2004
AM and ChemClim WG - February, 2008
Hannah M. Horowitz Daniel J. Jacob1, Yanxu Zhang1, Theodore S
A model of sea salt aerosol for Cape Grim Preliminary investigations
ATMOSPHERIC AEROSOL: suspension of condensed-phase particles in air
Wind.
Influences of Wet Scavenging on Aerosol Concentrations and Deposition in the ECHAM5-HAM Global Climate Model Betty Croft1 Ulrike.
Robert Wood University of Washington
Aerosol Optical Thickness
Hannele's research since Hyytiälä
A Bulk Parameterization of Giant CCN
The Aerosol Microphysics Model M7
Contribution from Natural Sources of Aerosol Particles to PM in Canada
Oleg Travnikov EMEP/MSC-E
Presentation transcript:

How well do we model marine aerosols, and why? Kostas Tsigaridis kostas.tsigaridis@columbia.edu kostas.tsigaridis@nasa.gov

Kostas Tsigaridis, Columbia University/NASA GISS Sea spray 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Kostas Tsigaridis, Columbia University/NASA GISS Sea spray Solubility (hygroscopicity) Aerosol composition  cloud formation Clouds  aerosol formation Clouds  aerosol removal Dissolved aerosols into clouds  cloud properties & lifetime 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Kostas Tsigaridis, Columbia University/NASA GISS Sea spray source Gong (2003) 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Kostas Tsigaridis, Columbia University/NASA GISS Sea spray source Tsigaridis et al., JGR, submitted Fine mode Coarse mode SS1 0.1-1μm 1-4μm SS2 1-10μm SS3 0.1-0.5μm 0.5-4μm 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Sea salt comparison with measurements Prospero and Savoie dataset, University of Miami Sea salt comparison with measurements 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Sea salt comparison with measurements Tsigaridis et al., JGR, submitted 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Kostas Tsigaridis, Columbia University/NASA GISS Sea salt vs. wind speed Tsigaridis et al., JGR, submitted 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Sea salt size distribution (dry radius) Fine (μg) Source (Tg a-1) Coarse (μg) Reference 0.1-1 1734 1-4 Koch et al., 2006 0.05-0.5 24+6273 >0.5 Vignati et al., 2010 31+6259 Myriokefalitakis et al., 2010 0.01-0.5 59+2229 0.5-4 Jaeglé et al., 2010 0.011-0.25* 1500 0.25-6* Long et al., 2011 0.005-0.04 0.04-0.15 0.15-0.5 0.7 14.8 100+3427 0.5-5 Meskhidze et al., 2011 * Approximate values based on wet size at 80%RH: 0.022-0.5 and 0.5-12. They are the composite of 8 bins. 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Sea-spray organic enrichment SeaWiFS, 2000 O’Dowd et al., 2008 Vignati et al., 2010 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Organic enrichment vs. size Gantt et al., 2011 Models’ sea salt (sea spray) fine/coarse threshold 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Organic enrichment vs. wind speed Gantt and Meskhidze, 2011 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Organics comparison with measurements Tsigaridis et al., JGR, submitted Without oceanic organics 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Organics comparison with measurements Tsigaridis et al., JGR, submitted With oceanic organics 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Organics comparison with measurements Tsigaridis et al., JGR, submitted 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Oceanic aerosol budget Tracer Source (Tg a-1) Lifetime (days) Reference Sea salt 24+6273 Vignati et al., 2010 31+6259 Myriokefalitakis et al., 2010 59+2229 1.03, 0.5 Jaeglé et al., 2010 1500 Long et al., 2011 Oceanic OA 1.4+12.6 Duce et al., 1983 5.5+2.5 (TgC a-1) Spracklen et al., 2008 75 (TgC a-1) Roelofs, 2008 2.9+19.4 (TgC a-1) Gantt et al., 2009 8.2+9 2.2 7-8 4.5 29 (TgC a-1) 17.7 (TgC a-1) Westervelt et al., 2011 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Oceanic aerosol budget Tsigaridis et al., JGR, submitted Source (Tg a-1) Lifetime (days) Fine Coarse Sea salt SS1 – Gong 360 (280) 2330 1.4 (1.5) 1.1 SS2 – Gong 5100 0.4 SS3 – Gong 36 (28) 2660 SS1 – Jaegle 310 (250) 2020 1.3 (1.4) Organics 75 - 1.5 7.5 65 1.4 Fine mode Coarse mode SS1 0.1-1μm 1-4μm SS2 1-10μm SS3 0.1-0.5μm 0.5-4μm 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Southern Ocean aerosol optical depth Tsigaridis et al., JGR, submitted SS1 SS2 SS3 SS1 SS2 SS3 SS1 SS2 SS3 Fine mode Coarse mode SS1 0.1-1μm 1-4μm SS2 1-10μm SS3 0.1-0.5μm 0.5-4μm 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Aerosol concentration changes Tsigaridis et al., JGR, submitted Sea salt Organic aerosol Wind speed 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Kostas Tsigaridis, Columbia University/NASA GISS Sea-salt vs. wind speed Tsigaridis et al., JGR, submitted 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Kostas Tsigaridis, Columbia University/NASA GISS CDNC changes Tsigaridis et al., JGR, submitted 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Kostas Tsigaridis, Columbia University/NASA GISS AeroCom models 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

AeroCom models – sea salt source 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

AeroCom models – sea salt load 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS

Kostas Tsigaridis, Columbia University/NASA GISS Concluding remarks Sea salt sources differ by an order of magnitude in different global models Sea spray sources and size distribution are critically important on oceanic OA fluxes Oceanic OA sources are very uncertain and differ by an order of magnitude between models; sea spray sources are among the ones to blame Sea salt number and size distribution? Removal? 1/3/2019 Kostas Tsigaridis, Columbia University/NASA GISS