to the liver and promote patient-derived xenograft tumour growth

Slides:



Advertisements
Similar presentations
Figure 4 PET imaging in experimental pancreatic cancer
Advertisements

Nat. Rev. Clin. Oncol. doi: /nrclinonc
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Low-grade inflammation in FGID
Figure 1 Key elements of cancer-related inflammation
Figure 4 Activation of clopidogrel via cytochrome P450
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Clin. Oncol. doi: /nrclinonc
Figure 1 Gut microorganisms at the intersection of several diseases
Figure 3 Monitoring clonal evolution using liquid biopsies
Figure 5 Lipid droplet consumption
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Clin. Oncol. doi: /nrclinonc
Figure 1 Worldwide incidence of CCA
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Biosimilar development process
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Effect of PPIs on gastric physiology
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 4 Giant lipid droplet formation
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 The association between CD8+ T‑cell density of the tumour
Figure 6 Combination therapy for HCC
Figure 2 Modelling the effect of HCV treatment on reinfection in people who inject drugs Figure 2 | Modelling the effect of HCV treatment on reinfection.
Figure 4 Proinflammatory immune cells and their crosstalk in patients with IBD Figure 4 | Proinflammatory immune cells and their crosstalk in patients.
Figure 1 Definition and concept of ACLF
Figure 1 Functions, features and phenotypes of HSCs in normal and diseased livers Figure 1 | Functions, features and phenotypes of HSCs in normal and diseased.
Figure 1 Host range of hepatitis E virus
Figure 2 Switching of biologic agents and biosimilars
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Differences between MC and AC
Figure 1 Exosomes with siRNAs targeting
Figure 7 Example colonic high-resolution manometry
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Urol. doi: /nrurol
Figure 1 Environmental factors contributing to IBD pathogenesis
different types of liver cells
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 13C-octanoic acid gastric emptying breath test
in the UK (1961–2012), France (1961–2014) and Italy (1961–2010)
Figure 3 Lipid droplet formation and expansion
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Possible therapeutic targets to decrease hepatic steatosis
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 Animal models of liver regeneration
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 3 Strategies to improve liver regeneration
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 6 Assessment of colonic transit time with radiopaque markers
Figure 5 Systems biological model of IBS
Figure 4 Local species pools that contribute to the
Figure 1 Cancer stem cell plasticity and stem cell homeostasis in the gut Figure 1 | Cancer stem cell plasticity and stem cell homeostasis in the gut.
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 2 Lifelong influences on the gut microbiome from
Figure 1 NAFLD pathogenesis
Figure 2 Classifications and appearance of CCAs
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Nat. Rev. Gastroenterol. Hepatol. doi: /nrgastro
Figure 1 The spread of colorectal cancer metastases
Presentation transcript:

to the liver and promote patient-derived xenograft tumour growth Figure 1 Fusobacterium translocate with primary colorectal cancer cells to the liver and promote patient-derived xenograft tumour growth Figure 1 | Fusobacterium translocate with primary colorectal cancer cells to the liver and promote patient-derived xenograft tumour growth. Bullman et al.10 showed that the same Fusobacterium species were present in paired primary and metastatic tumour samples from patients with colorectal cancer (CRC) and that the Fusobacterium-killing antibiotic metronidazole, but not erythromycin, inhibited patient-derived xenograft tumour growth. Yang, Y. & Jobin, C. (2018) Hand‑in‑hand — colorectal cancer metastasizes with microorganisms Nat. Rev. Gastroenterol. Hepatol. doi:10.1038/nrgastro.2017.186