Physical Chemistry Week 5 & 6

Slides:



Advertisements
Similar presentations
Introduction to Quantum Theory
Advertisements

The Quantum Mechanics of Simple Systems
Chemistry 2 Lecture 2 Particle in a box approximation.
The Hydrogen Atom. Model The “orbitals” we know from general chemistry are wave functions of “hydrogen-like” atoms Hydrogen-like: any atom, but it has.
Chapter (6) Introduction to Quantum Mechanics.  is a single valued function, continuous, and finite every where.
Particle In A Box.
Lecture Notes # 3 Understanding Density of States
Wavefunction Quantum mechanics acknowledges the wave-particle duality of matter by supposing that, rather than traveling along a definite path, a particle.
Overview of QM Translational Motion Rotational Motion Vibrations Cartesian Spherical Polar Centre of Mass Statics Dynamics P. in Box Rigid Rotor Spin Harmonic.
PHY 102: Waves & Quanta Topic 14 Introduction to Quantum Theory John Cockburn Room E15)
Overview of QM Translational Motion Rotational Motion Vibrations Cartesian Spherical Polar Centre of Mass Statics Dynamics P. in Box Rigid Rotor Angular.
Dr. Jie ZouPHY Chapter 41 Quantum Mechanics (Cont.)
LECTURE 16 THE SCHRÖDINGER EQUATION. GUESSING THE SE.
Lecture 8 Particle in a box (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and made.
Ch 9 pages ; Lecture 21 – Schrodinger’s equation.
Lecture 10 Harmonic oscillator (c) So Hirata, Department of Chemistry, University of Illinois at Urbana-Champaign. This material has been developed and.
The Hydrogen Atom Quantum Physics 2002 Recommended Reading: Harris Chapter 6, Sections 3,4 Spherical coordinate system The Coulomb Potential Angular Momentum.
Physics 3 for Electrical Engineering
Physics 451 Quantum mechanics I Fall 2012 Sep 10, 2012 Karine Chesnel.
P460 - Sch. wave eqn.1 Solving Schrodinger Equation If V(x,t)=v(x) than can separate variables G is separation constant valid any x or t Gives 2 ordinary.
Operators A function is something that turns numbers into numbers An operator is something that turns functions into functions Example: The derivative.
Examples and Exercises. Normalizing a Wavefunction Find a normalizing factor of the hydrogen’s electron wavefunction Function of r, using spherical coordinate.
CHAPTER 2 Schrodinger Theory of Quantum Mechanics.
Ch 4. Using Quantum Mechanics on Simple Systems
MS310 Quantum Physical Chemistry
Lecture 5 The Simple Harmonic Oscillator
Time-independent Schrodinger eqn QM Ch.2, Physical Systems, 12.Jan.2003 EJZ Assume the potential V(x) does not change in time. Use * separation of variables.
Physics 361 Principles of Modern Physics Lecture 13.
Physical Chemistry III (728342) The Schrödinger Equation
Introduction to Quantum Mechanics
LECTURE 17 THE PARTICLE IN A BOX PHYSICS 420 SPRING 2006 Dennis Papadopoulos.
Nanoelectronics Chapter 3 Quantum Mechanics of Electrons
量子力學導論 Chap 1 - The Wave Function Chap 2 - The Time-independent Schrödinger Equation Chap 3 - Formalism in Hilbert Space Chap 4 - 表象理論.
Principles of Quantum Mechanics P1) Energy is quantized The photoelectric effect Energy quanta E = h  where h = J-s.
Review for Exam 2 The Schrodinger Eqn.
Finite Potential Well The potential energy is zero (U(x) = 0) when the particle is 0 < x < L (Region II) The energy has a finite value (U(x) = U) outside.
Schrodinger wave equation
UNIT 1 Quantum Mechanics.
Quantum Mechanics.
PHYS274 Atomic Structure I
المحاضرة السادسة حل معادلة شرود نجر في بعد واحد (1) الجهد اللانهائي
Quantum One.
Elements of Quantum Mechanics
Quantum One.
Quantum mechanics II Winter 2011
Quantum One.
translation vibration rotation
Quantum mechanics I Fall 2012
Lecture 7 SMES2201 Semester 1 (2009/2010)
Ψ
Quantum Mechanics: Tunneling
Particle in a Box.
Application of Schrödinger Equation: one-dimensional quantum well
The Stale of a System Is Completely Specified by lts Wave Function
Physical Chemistry Week 10
Shrödinger Equation.
Physical Chemistry Week 12
Particle in a box Potential problem.
Infinite Square Well.
 .
CHAPTER 3 PROBLEMS IN ONE DIMENSION Particle in one dimensional box
PHYS 3313 – Section 001 Lecture #19
Reading: Chapters #5 in Shankar; quantum mechanical systems in 1-dim
Quantum Model of the Atom
Department of Electronics
Chapter 40 Quantum Mechanics
Linear Vector Space and Matrix Mechanics
Linear Vector Space and Matrix Mechanics
Wave-Particle Duality and the Wavefunction
Derivation of the Schrödinger equation
Presentation transcript:

Physical Chemistry Week 5 & 6

Uncertainty principle for energy and time From time-dependent S.E. 𝑖ℏ 𝜕 𝜕𝑡 𝜓= 𝐻 𝜓, we define 𝐻 =𝑖ℏ 𝜕 𝜕𝑡 ∵ 𝐻 ,𝑡 𝜙= 𝐻 𝑡𝜙 −𝑡 𝐻 𝜙 =𝑖ℏ𝜙 ∴ 𝐻 ,𝑡 =𝑖ℏ So that ∆𝐸⋅∆𝑡≥ℏ/2 If a quantum state has definite energy, i.e. ∆𝐸=0, then the life time of this state will be ∆𝑡→∞ In reality, energy level is broadened, and ∆𝑡~ℏ/∆𝐸 is regarded as life time of the energy level

Translation motion – 1D particle-in-a-box model One particle with mass 𝑚 confined in a box 0,𝐿 𝐻 =− ℏ 2 2𝑚 d 2 d 𝑥 2 +𝑉 𝑥 where 𝑉 𝑥 = 0,& 0<𝑥<𝐿 +∞,& 𝑥≤0 𝑜𝑟 𝑥≥𝐿 Within 0,𝐿 , the S.E. has solution 𝜓=𝐴 𝑒 𝑖𝑘𝑥 +𝐵 𝑒 −𝑖𝑘𝑥 , 𝑘= 2𝑚𝐸 /ℏ Outside 0,𝐿 , 𝜓=0

Continued Since wave function should be continuous, we impose boundary conditions 𝜓 0 =𝜓 𝐿 =0 𝜓 0 =𝐴+𝐵=0→𝐴=−𝐵 𝜓 𝐿 =−𝐵 𝑒 𝑖𝑘𝐿 +𝐵 𝑒 −𝑖𝑘𝐿 =−2𝑖𝐵 sin 𝑘𝐿 =0→𝑘𝐿=𝑛𝜋, 𝑛=1,2,… So that within 0,𝐿 , 𝜓 𝑥 =−2𝑖𝐵 sin 𝑛𝜋 𝐿 𝑥 After normalization, 𝜓 𝑛 𝑥 = 2 𝐿 sin 𝑛𝜋 𝐿 𝑥 , 𝑛=1,2,… Energy 𝐸 𝑛 = ℏ 2 𝑘 2 2𝑚 = 𝑛 2 𝜋 2 ℏ 2 2𝑚 𝐿 2 , 𝑛=1,2,…

Orthogonality For 𝑛≠𝑚, the following integral should be zero 0 𝐿 d𝑥 𝜓 𝑛 ∗ 𝜓 𝑚 &= 2 𝐿 0 𝐿 d𝑥 sin 𝑛𝜋𝑥 𝐿 sin 𝑚𝜋𝑥 𝐿 &=− 1 𝐿 0 𝐿 d𝑥 cos 𝑛+𝑚 𝜋𝑥 𝐿 − cos 𝑛−𝑚 𝜋𝑥 𝐿 &=− 1 𝐿 𝐿 𝑛+𝑚 𝜋 ⋅ sin 𝑛+𝑚 𝜋𝑥 𝐿 0 𝐿 − 𝐿 𝑛−𝑚 𝜋 ⋅ sin 𝑛−𝑚 𝜋𝑥 𝐿 0 𝐿 &=0

Check uncertainty principle for ground state We define uncertainty of an operator 𝐴 as ∆𝐴&= 𝐴 − 𝐴 2 &= 𝐴 2 −2 𝐴 𝐴 + 𝐴 2 &= 𝐴 2 −2 𝐴 𝐴 + 𝐴 2 &= 𝐴 2 − 𝐴 2

Continued 𝑥 &= 2 𝐿 0 𝐿 𝑥 sin 2 𝜋𝑥 𝐿 d𝑥 &= 1 𝐿 0 𝐿 𝑥 1− cos 2𝜋𝑥 𝐿 d𝑥 &= 𝐿 2 − 1 𝐿 0 𝐿 𝑥 cos 2𝜋𝑥 𝐿 d𝑥 &= 𝐿 2

Continued 𝑥 2 &= 2 𝐿 0 𝐿 𝑥 2 sin 2 𝜋𝑥 𝐿 d𝑥 &= 1 𝐿 0 𝐿 𝑥 2 1− cos 2𝜋𝑥 𝐿 d𝑥 &= 𝐿 2 3 − 1 𝐿 0 𝐿 𝑥 2 cos 2𝜋𝑥 𝐿 d𝑥 &= 𝐿 2 3 − 𝐿 2 2 𝜋 2

Continued 𝑝 &= 2ℏ 𝑖𝐿 ⋅ 𝜋 𝐿 0 𝐿 sin 𝜋𝑥 𝐿 cos 𝜋𝑥 𝐿 d𝑥 &= ℏ𝜋 𝑖 𝐿 2 0 𝐿 sin 2𝜋𝑥 𝐿 d𝑥 &=0

Continued 𝑝 2 &= 2 ℏ 2 𝐿 ⋅ 𝜋 2 𝐿 2 0 𝐿 sin 2 𝜋𝑥 𝐿 d𝑥 &= 𝜋 2 ℏ 2 𝐿 3 0 𝐿 1− cos 2𝜋𝑥 𝐿 d𝑥 &= 𝜋 2 ℏ 2 𝐿 2

Continued ∆𝑥&= 𝐿 2 3 − 𝐿 2 2 𝜋 2 − 𝐿 2 2 &= 𝐿 2𝜋 𝜋 2 3 −2 ∆𝑝&= 𝜋ℏ 𝐿 So ∆𝑥⋅∆𝑝= ℏ 2 ⋅ 𝜋 2 3 −2 ≈1.136⋅ ℏ 2 > ℏ 2

Appendix Let 𝛼 𝑘 = 0 𝐿 sin 𝑘𝑥 d𝑥 = 1− cos 𝑘𝐿 𝑘 d𝛼 𝑘 d𝑘 &= 0 𝐿 𝑥 cos 𝑘𝑥 d𝑥 &= 𝐿 sin 𝑘𝐿 𝑘 + cos 𝑘𝐿 −1 𝑘 2 So 0 𝐿 𝑥 cos 2𝜋𝑥 𝐿 d𝑥 = d𝛼 𝑘 d𝑘 𝑘=2𝜋/𝐿 =0

Continued Let 𝛽 𝑘 = 0 𝐿 cos 𝑘𝑥 d𝑥 = sin 𝑘𝐿 𝑘 d 2 𝛽 𝑘 d𝑘 2 &=− 0 𝐿 𝑥 2 cos 𝑘𝑥 d𝑥 &=− 𝐿 2 sin 𝑘𝐿 𝑘 − 2𝐿 cos 𝑘𝐿 𝑘 2 + 2 sin 𝑘𝐿 𝑘 3 So 0 𝐿 𝑥 2 cos 2𝜋𝑥 𝐿 d𝑥 =− d 2 𝛽 𝑘 d𝑘 2 𝑘=2𝜋/𝐿 = 𝐿 3 2 𝜋 2

Review One particle in a 1D box 𝜓 𝑛 𝑥 = 2 𝐿 sin 𝑛𝜋𝑥 𝐿 𝑛=1,2,3,… Wave Function: 𝜓 𝑛 𝑥 = 2 𝐿 sin 𝑛𝜋𝑥 𝐿 𝑛=1,2,3,… n=1 Energy Levels: x=L 𝑛=3 𝐸 3 = 9 𝜋 2 ℏ 2 2𝑚 𝐿 2 n=3 n=2 𝑛=2 𝐸 2 = 2𝜋 2 ℏ 2 𝑚 𝐿 2 𝑛=1 𝐸 1 = 𝜋 2 ℏ 2 2𝑚 𝐿 2 Ground State x

One particle in a 2D box Hamiltonian operator: y=L2 𝐻 =− ℏ 2 2𝑚 ( 𝜕 2 𝜕 𝑥 2 + 𝜕 2 𝜕 𝑦 2 )+𝑉(𝑥,𝑦) m 𝑉 𝑥,𝑦 = 0,& 0<𝑥< 𝐿 1 𝑎𝑛𝑑 0<𝑦< 𝐿 2 +∞,& 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 y=0 x=0 x=L1

Schrödinger Equation 𝐻 𝜓 𝑥,𝑦 =𝐸𝜓 𝑥,𝑦 Within 0<𝑥< 𝐿 1 and 0<𝑦< 𝐿 2 , − ℏ 2 2𝑚 𝜕 2 𝜓 𝑥,𝑦 𝜕 𝑥 2 + 𝜕 2 𝜓 𝑥,𝑦 𝜕 𝑦 2 =𝐸𝜓 𝑥,𝑦 Boundary conditions 𝜓 0,𝑦 =𝜓 𝐿 1 ,𝑦 =𝜓 𝑥,0 =𝜓 𝑥, 𝐿 2 =0

Separation of variables Let 𝜓 𝑥,𝑦 =𝑋 𝑥 𝑌 𝑦 and plug this equation into S.E., we get − ℏ 2 2𝑚 d 2 𝑋 d 𝑥 2 𝑌+𝑋 d 2 𝑌 d 𝑦 2 =𝐸𝑋𝑌 Divide both sides by 𝑋𝑌 − ℏ 2 2𝑚 1 𝑋 d 2 𝑋 d 𝑥 2 + 1 𝑌 d 2 𝑌 d 𝑦 2 =𝐸

Continued To ensure − ℏ 2 2𝑚 1 𝑋 d 2 𝑋 d 𝑥 2 + 1 𝑌 d 2 𝑌 d 𝑦 2 =𝐸, each term in the LHS should be some constant, viz. − ℏ 2 2𝑚 1 𝑋 d 2 𝑋 d 𝑥 2 = 𝐸 1 − ℏ 2 2𝑚 1 𝑌 d 2 𝑌 d 𝑦 2 = 𝐸 2 And 𝐸 1 + 𝐸 2 =𝐸

Continued The 2D S.E. of 𝜓 𝑥,𝑦 has been decomposed into two 1D S.E. − ℏ 2 2𝑚 d 2 𝑋 d 𝑥 2 = 𝐸 1 𝑋 − ℏ 2 2𝑚 d 2 𝑌 d 𝑦 2 = 𝐸 2 𝑌 With solution where 𝑛 1 , 𝑛 2 =1,2,3,… 𝜓 𝑛 1 , 𝑛 2 = 2 𝐿 1 𝐿 2 sin 𝑛 1 𝜋𝑥 𝐿 1 sin 𝑛 2 𝜋𝑦 𝐿 2 &, 𝑤𝑖𝑡ℎ𝑖𝑛 2𝐷 𝑏𝑜𝑥 0&, 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑏𝑜𝑥 𝐸 𝑛 1 , 𝑛 2 = 𝑛 1 2 𝜋 2 ℏ 2 2𝑚 𝐿 1 2 + 𝑛 2 2 𝜋 2 ℏ 2 2𝑚 𝐿 2 2

Mid-term summary Schrödinger Equation 𝐻 Ψ=𝐸Ψ 𝐻 = 𝐾 + 𝑉 Hamiltonian/Energy operator = Kinetic energy operator + potential energy operator For one-particle system: 3D 𝑇 =− ℏ 2 2𝑚 𝛻 2 +𝑉 𝑥,𝑦,𝑧 , where 𝛻 2 = 𝜕 2 𝜕 𝑥 2 + 𝜕 2 𝜕 𝑦 2 + 𝜕 2 𝜕 𝑧 2 is a Laplacian operator; 1D 𝑇 =− ℏ 2 2𝑚 d 2 d 𝑥 2 +𝑉 𝑥

Continued Probability density - Ψ 𝑥 2 The probability to find the particle between 𝑥 and 𝑥+d𝑥 is Ψ 𝑥 2 d𝑥 The probability to find the particle in whole space should be 1 Normalization of wave function Ψ/ d𝜏 Ψ 2 Hermitian operator d𝜏 𝜙 ∗ Ω 𝜓 = d𝜏 𝜓 ∗ Ω 𝜙 ∗ e.g. 𝑝 = ℏ 𝑖 ∇, 𝑝 𝑥 = ℏ 𝑖 d d𝑥

Continued Eigen value and eigen function ⅆ𝜏 𝜓 𝑖 ∗ 𝜓 𝑗 =0 if 𝐸 𝑖 ≠ 𝐸 𝑗 𝐻 𝜓 𝑖 = 𝐸 𝑖 𝜓 𝑖 ⅆ𝜏 𝜓 𝑖 ∗ 𝜓 𝑗 =0 if 𝐸 𝑖 ≠ 𝐸 𝑗 Uncertainty principle 𝑥 , 𝑝 𝑥 =𝑖ℏ, ∆𝑥⋅∆ 𝑝 𝑥 ≥ℏ/2 ∆𝐸⋅∆𝑡≥ℏ/2 − ℏ 2 2𝑚 d 2 𝜓 d 𝑥 2 +𝑉𝜓=𝐸𝜓, 𝐸>𝑉 𝜓=𝑁 𝑒 ±𝑖𝑘𝑥 , 𝑘= 2𝑚 𝐸−𝑉 /ℏ, 𝑁 is normalization factor