Constraining neutrino electromagnetic properties using Xenon detectors

Slides:



Advertisements
Similar presentations
Ze-Peng Liu, Yue-Liang Wu and Yu-Feng Zhou Kavli Institute for Theoretical Physics China, Institute of Theoretical Physics, Chinese Academy of Sciences.
Advertisements

NEST: Noble Element Simulation Technique Modeling the Underlying Physics of Noble Liquids, Gases Matthew Szydagis, UC Davis UCLA DM 02/28/14 1
Status of XMASS experiment Shigetaka Moriyama Institute for Cosmic Ray Research, University of Tokyo For the XMASS collaboration September 10 th, 2013.
MiniBooNE: (Anti)Neutrino Appearance and Disappeareance Results SUSY11 01 Sep, 2011 Warren Huelsnitz, LANL 1.
Degree of polarization of  produced in quasielastic charge current neutrino-nucleus scattering Krzysztof M. Graczyk Jaroslaw Nowak Institute of Theoretical.
Varan Satchithanandan Mentor: Dr. Richard Jones.  explains what the world is and what holds it together  consists of:  6 quarks  6 leptons  force.
Neutrino Physics - Lecture 6 Steve Elliott LANL Staff Member UNM Adjunct Professor ,
Moscow State University & JINR - Dubna Alexander Studenikin “Particle Physics and Cosmology” XXIII Rencontres de Blois 31/05/2011 New bounds on neutrino.
Luminous Dark Matter Brian Feldstein arXiv: B.F., P. Graham and S. Rajendran.
Form Factor Dark Matter Brian Feldstein Boston University In Preparation -B.F., L. Fitzpatrick and E. Katz In Preparation -B.F., L. Fitzpatrick, E. Katz.
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
Measurements of F 2 and R=σ L /σ T on Deuteron and Nuclei in the Nucleon Resonance Region Ya Li January 31, 2009 Jlab E02-109/E (Jan05)
ENHANCED DIRECT PHOTON PRODUCTION IN 200 GEV AU+AU IN PHENIX Stefan Bathe for PHENIX, WWND 2009.
Neutralino Dark Matter in Light Higgs Boson Scenario (LHS) The scenario is consistent with  particle physics experiments Particle mass b → sγ Bs →μ +
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Dott. Antonio Botrugno Ph.D. course UNIVERSITY OF LECCE (ITALY) DEPARTMENT OF PHYSICS.
A Lightning Review of Dark Matter R.L. Cooper
Measuring the charged pion polarizability in the  →    −  reaction David Lawrence, JLab Rory Miskimen, UMass, Amherst Elton Smith, JLab.
What Atomic Physics Can Do for Neutrino and Direct Dark Matter Detection? Jiunn-Wei Chen National Taiwan U. Collaborators: Chih-Liang Wu, Chih-Pang Wu.
1 GEMMA: experimental searches for neutrino magnetic moment JINR: V. Brudanin, V. Egorov, D. Medvedev, M. Shirchenko, E. Shevchik, I. Zhitnikov, V. Belov.
KIMS Seoul National University Juhee Lee 1 KPS in Changwon.
Robert Cooper. What is CENNS? Coherent Elastic Neutrino-Nucleus Scattering To probe a “large” nucleus Recoil energy small Differential energy spectrum.
N. Poljak, FPD++ N. Poljak, U. of Zagreb.
Monojet / monophoton / diphoton events with large missing transverse energy at the LHC Kang Young Lee GNU, SNU
P Spring 2002 L18Richard Kass The Solar Neutrino Problem M&S Since 1968 R.Davis and collaborators have been measuring the cross section of:
Search for dark-sector Higgs and gauge bosons at B A B AR Adrian Bevan 1July 2012 h'h' A'A' χ A0A0.
Results and Implications from MiniBooNE: Neutrino Oscillations and Cross Sections 15 th Lomonosov Conference, 19 Aug 2011 Warren Huelsnitz, LANL
July 10, 2006TAPS 2006 Experimental Hall-D and the GlueX Experiment at Jefferson Lab Dr. David Lawrence Jefferson Lab Dr. David Lawrence Jefferson Lab.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
Jeong, Yu Seon Yonsei University Neutrino and Cosmic Ray Signals from the Moon Jeong, Reno and Sarcevic, Astroparticle Physics 35 (2012) 383.
News from the Sudbury Neutrino Observatory Simon JM Peeters July 2007 o SNO overview o Results phases I & II o hep neutrinos and DSNB o Update on the III.
Scintillating Bubble Chambers for Direct Dark Matter Detection Jeremy Mock On behalf of the UAlbany and Northwestern Groups 1.
Xenon100 collaboration gives a stringent constraint on spin-independent elastic WIMP-nucleon scattering cross section. Ton-scale detectors for direct detection.
Dark Matter Detectors and the Neutrino Wall Malcolm Fairbairn IDM 2016 Sheffield.
Possible Ambiguities of Neutrino-Nucleus Scattering in Quasi-elastic Region K. S. Kim School of Liberal Arts and Science, Korea Aerospace University, Korea.
Review of Neutrino Coherent Scattering
Keiko Nagao (National Institute of Technology, Niihama College, Japan)
X-ray telescope: D. Greenwald, R. Kotthaus, G. Lutz
Felix Kahlhoefer Dark LHC 27 September 2014 Oxford
Determining the neutrino flavor ratio at the astrophysical source
The study of pentaquark states in the unitary chiral approach
Exclusive w/h production in pp collisions at Ekin=3.5 GeV with HADES
UK Dark Matter Collaboration
Possible Ambiguities of Neutrino-Nucleus
M. V. Chizhov DESY/Sofia University, Bulgaria
Sterile Neutrinos and WDM
Yuliya Aksyutina for the LAND-R3B collaboration Motivation
Gamma Ray Constraints on New Physics Interpretations of IceCube Data
Outline 1. Introduction & Overview 2. The experiment result 3. Future
Direct Detection of Vector Dark Matter
Neutrino astronomy Measuring the Sun’s Core
Gluon Contribution to Dark Matter Direct Detection
XAX Can DM and DBD detectors combined?
Direct Detection of Dark Matter
Neutral and charged Higgsino as carriers of residual SUSY effects.
Measuring fragmentation photons in p+p collisions
RAA predictions show enhancement highly sensitive to jet quenching
Precision Measurement of η Radiative Decay Width via Primakoff Effect
Study of Strange Quark in the Nucleon with Neutrino Scattering
GEANT Simulations and Track Reconstruction
Mukesh Kumar Pandey Dept. of Physics, National Taiwan University
We-Fu Chang, Wei-Ping Pan
Davide Franco for the Borexino Collaboration Milano University & INFN
Coupled-channel effects in the decays of exotic states
Search for Invisible Decay of Y(1S)
Neutrino Magnetic Moment : Overview
Kuo-Sheng(國聖) Reactor Neutrino Lab.
Deeply Virtual Scattering
Some Nuclear Physics with Solar Neutrinos
(Tokyo university, ICRR)
Presentation transcript:

Constraining neutrino electromagnetic properties using Xenon detectors Chung-Chun Hsieh National Taiwan University Collaborators: Prof. Jiunn-Wei Chen, Dr. Chih-Pan Wu, Dr. Mukesh K. Pandey (NTU), Prof. Cheng-Pang Liu, Prof. Hsin-Chang Chi (NDHU), Dr. Lakhwinder Singh and Prof. Henry T. Wong (AS)

Outline Introduction Motivation (neutrino physics & DM xenon detector) Formalism Ab initio atomic calculation Results Differential cross section Constraining values Summary

Introduction Exotic neutrino EM properties beyond SM New physics What if neutrinos are millicharged? Experimental upper limits of neutrino magnetic moment >> theoretical prediction New physics Connection between dark matter search and neutrino physics Removal of the neutrino background in WIMP detection WIMP xenon detector → neutrino detector! Advantages: Xenon detectors’ ability to scale up No extra setup needed 𝜈+𝐴→𝜈+ 𝐴 + + 𝑒 − Better constraints? M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) A. G. Beda et al., Phys. Part. Nucl. Lett. 10, 139 (2013). J. Billard et al., Phys. Rev. D 89, 023524 (2014), arXiv:1307.5458 [hep-ph].

Formalism The associated EM current: Constraining millicharge & magnetic moment interaction 𝑗 𝜇 𝛾 = 𝜈 𝑘 2 , 𝑠 2 𝐹 1 𝑞 2 𝛾 𝜇 −𝑖 𝐹 2 𝑞 2 +𝑖 𝐹 𝐸 𝑞 2 𝛾 5 𝜎 𝜇𝜈 𝑞 𝜈 + 𝐹 𝐴 𝑞 2 𝑞 2 𝛾 𝜇 −𝑞 𝑞 𝜇 𝛾 5 𝜈 𝑘 1 , 𝑠 1 𝛿 𝑄 = 𝐹 1 0 𝜇 𝜈 = 𝐹 2 0 J.-W. Chen, H.-C. Chi, K.-N. Huang, H.-B. Li, C.-P. Liu, L. Singh, H. T. Wong, C.-L. Wu, and C.-P. Wu, Phys. Rev. D 91, 013005 (2015), arXiv:1411.0574 [hep-ph].

Atomic calculation Atomic effect become important Ab initio method: Relativistic Random Phase Approximation, RRPA (containing many body effect, e.g. 2 e- correlation, and relativistic effect). Benchmark calculation: Xe photoabsorption Error within 5%, good approximation J. B. West and J. Morton, At. Data Nucl. Data Tables 22 (1978) 103. B. L. Henke, E. M. Gullikson, J. C. Davis, At. Data Nucl. Data Tables 54 (1993) 181. J. Samson, W. Stolte, J. Electron Spectrosc. Relat. Phenom. 123 (2002) 265. I. H. Suzuki, N. Saito, J. Electron Spectrosc. Relat. Phenom. 129 (2003) 71. L. Zheng, M. Cui, Y. Zhao, J. Zhao, K. Chen, J. Electron Spectrosc. Relat. Phenom. 152 (2006) 143.

Event rates & solar neutrino flux The total differential recoil rates 𝑑𝑁 𝑑𝑇 is obtained by folding the differential cross section 𝑑𝜎 𝑇, 𝐸 𝜈 𝑑𝑇 with the incident solar neutrino energy spectrum 𝑑𝜙 𝐸 𝜈 𝑑 𝐸 𝜈 . 7Be neutrinos: PP neutrinos: 𝑑𝑁 𝑑𝑇 = 6.02× 10 29 𝑀 𝑥𝑒𝑛𝑜𝑛 ×𝑡× 𝑑 𝐸 𝜈 𝑑𝜎 𝑇, 𝐸 𝜈 𝑑𝑇 𝑑𝜙 𝐸 𝜈 𝑑 𝐸 𝜈 1 𝑦𝑒𝑎𝑟 𝑝𝑝 & 7 𝐵𝑒 𝑛𝑒𝑢𝑡𝑟𝑖𝑛𝑜𝑠 𝜙 7 𝐵𝑒 =5.00× 10 9 𝑐𝑚 −2 𝑠 −1 , 862 𝑘𝑒𝑉 (89.6%), 384 𝑘𝑒𝑉 (10.4%) A. M. Serenelli, W. C. Haxton and C. Pena-Garay, Astrophys. J. 743, 24 (2011), 𝜙 𝑝𝑝 =5.98× 10 10 𝑐𝑚 −2 𝑠 −1 , 𝑑 𝜙 𝑝𝑝 𝐸 𝜈 𝑑 𝐸 𝜈 =A 𝑄+ 𝑚 𝑒 − 𝐸 𝜈 𝑄+ 𝑚 𝑒 − 𝐸 𝜈 2 − 𝑚 𝑒 2 1 2 𝐸 𝜈 2 𝐹 E. G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011). J. N. Bahcall, Phys. Rev. C 56, 3391 (1997). 𝑄=420𝑘𝑒𝑉, 𝐴=2.97× 10 −36 𝑘𝑒𝑉 2

Other approximations The Free Electron Approximation (FEA): Consider the scattering cross section of a neutrino and a free electron, 𝑑 𝜎 0 𝑑𝑇 , with the number of electrons that can be ionized by an energy deposition of T. The Equivalent Photon Approximation (EPA) Treat the virtual photon as real photon, only consider the transverse polarization. 𝑑𝜎 𝑑𝑇 = 𝑖=1 𝑍 𝜃 𝑇− 𝐵 𝑖 𝑑 𝜎 0 𝑑𝑇 Step function Binding energy J.-W. Chen, H.-C. Chi, K.-N. Huang, C.-P. Liu, H.-T. Shiao, et al., Phys. Lett. B 731, 159 (2014). M. B. Voloshin, Phys. Rev. Lett. 105, 201801 (2010), K. A. Kouzakov and A. I. Studenikin, Phys. Lett. B 696, 252 (2011). J.-W. Chen, H.-C. Chi, H.-B. Li, C. P. Liu, L. Singh, H. T. Wong, C.-L. Wu, and C.-P. Wu, Phys. Rev. D 90, 011301 (2014), arXiv:1405.7168 [hep-ph].

Result: magnetic moment Similar T dependence (∝ 1 𝑇 ) The FEA is a good approximation at high energy, but fails at low energy

Result: millicharge Larger T dependence (∝ 1 𝑇 2 ) The EPA fits better at low energy, while FEA at high

Complete event rates Scale up Lower the energy threshold A. Studenikin, (2013), arXiv:1302.1168 [hep-ph]. J.-W. Chen et al., Phys. Lett. B 731, 159 (2014), arXiv:1311.5294 [hep-ph]. Millicharge Coherent scattering Magnetic moment Charge radius Weak interaction Scale up Lower the energy threshold Discrimination at low energy Weak interaction: background

Constraining neutrino properties Using Xenon10 and Xenon100 data Transform the differential cross section into photoelectron signals and obtain a set of suggestive constrain values. Results (1 kg-day): The results are larger than the current best constraints by a factor of 4 (millicharge), but with multi-ton year exposure the constrain values could be improved by 2 orders. Data set 𝝁 𝝂 ( 𝝁 𝑩 ) 𝜹 𝑸 ( 𝒆 𝟎 ) Xenon10 𝟑.𝟎× 𝟏𝟎 −𝟗 𝟓.𝟔× 𝟏𝟎 −𝟏𝟐 Xenon100 1.2× 10 −8 1.1× 10 −11

Summary The contribution of this study is 2-fold: provide background for light WIMP direct search and constrain the EM properties of neutrinos. The differential cross section of magnetic moment and millicharged interaction are both enhanced at low T, where the atomic effects become important. The results are not as good as the current best constraints, but with multi-ton year exposure the constrain values using xenon detectors are projected to improve.

Thanks for listening & Happy new year!