Impact of electro-weak processes in Type II Supernovae collapse IPN Orsay CEA, DAM, DIF Observatoire de Paris, Meudon Università degli Studi di Milano Dipartimento di Fisica Université Libre de Bruxelles IAA energie atomique . energies alternatives Impact of electro-weak processes in Type II Supernovae collapse Patrick BLOTTIAU & Anthea F. FANTINA (CEA/DAM/DIF) (IAA – ULB Brussels) Dr. E. Khan, Dr. J. Margueron (IPN Orsay) Dr. Ph. Mellor (CEA, DAM, DIF) Dr. J. Novak, Dr. Micaela Oertel (Luth, Meudon) Prof. P. Pizzochero & Dr. P. Donati (Univ. Milano & INFN) MODE, Bordeaux, November 15-17, 2010
Nucleon effective mass Outline MICROPHYSICS MACROPHYSICS Weak-processes Neutrino transport Symmetry energy(T) SN Simulations Nucleon effective mass Hydrodynamics Equation of State One-zone General Relativity Newtonian P. Blottiau & A.F. Fantina MODE 2010
Part I: intro & 1D Newtonian code (with n transport) P. Blottiau & A.F. Fantina MODE 2010
Motivations: nuclear physics in SN Condition in the core during collapse : 1) Very wide range of rho, T, Ye 2) We expect effects of T important 3) Asymmetry -> importance of the symmetry energy Esym (T) 15 solar mass progenitor P. Blottiau & A.F. Fantina MODE 2010
T-dependence of Esym Theoretical studies on influence of T-dependence of nuclear symmetry energy on collapse trajectory: Donati P. et al, Phys. Rev. Lett. 72, 2835 (1994) Esym(T) obtained in analogy with Fermi gas model via m*(T): PVC dynamical effects beyond mean field (E-dependence of MF) Dean D.J. et al, Phys. Rev. C66, 31801 (2002) P. Blottiau & A.F. Fantina MODE 2010
EoS in SN simulations (see M. Oertel’s talk) Lattimer and Swesty, Nucl. Phys. A 535, 331 (1991) - based on a liquid drop model - Shen et al., Nucl. Phys. A 637, 435 (1998) - based on RMF - and : ? (or Esym(T) as in Donati et al.?) but : not easy to implement Esym(T) in these EoS Bethe H.A. et al., Nucl. Phys. A 324, 487 (1979) (BBAL) based on a liquid drop model analytical EoS m*(T) has been implemented according to calculations by Donati et al. Outlooks: include this “thermal” effect in modern EoS P. Blottiau & A.F. Fantina MODE 2010
Effect of Esym(T) on CCSN on free protons on nuclei larger values of Ylept at trapping less deleptonization less energy dissipated m*(T) Esym Yl,tr Shock wave energy In one-zone model m*(T) leads to systematic reduction of deleptonization in the core: dT Ylept ≈ 0.006 ⇒ dT Ediss ≈ 0.4 foe ( A.F.Fantina, P. Donati and P. M. Pizzochero, Phys. Lett. B676, 140 (2009) ) P. Blottiau & A.F. Fantina MODE 2010
Results of collapse simulation at bounce: impact of Esym(T), BBAL EoS (1D Newtonian) Systematic effect! ( A.F.Fantina, P. Blottiau, J. Margueron, Ph. Mellor, and P. Pizzochero, in preparation) P. Blottiau & A.F. Fantina MODE 2010
Conclusions & Outlook (I) Influence of T-dependence of Esym on the evolution of collapse → systematic reduction of neutronization of the core (increasing of final lepton fraction) & less energy dissipated by shock wave - one zone model - → position of shock wave formation: bigger homologous core - 1D Newtonian code - even if no dramatic effect on dynamics of the collapse is expected (see fluid instabilities, SASI, magnetic field, …) effects are not negligible! P. Blottiau & A.F. Fantina MODE 2010
Part II: 1D GR (+ Newtonian vers.) code (no n transport) P. Blottiau & A.F. Fantina MODE 2010
Results of collapse simulation at bounce: “std” trapping (1D GR), LS EoS K=180MeV Bruenn 1985 rates P. Blottiau & A.F. Fantina MODE 2010
GR vs Newtonian simulation at bounce P. Blottiau & A.F. Fantina MODE 2010
Conclusions (II) GR code : improvements → introduction of a trapping scheme → implementation of the Newtonian version → results in global agreement with the literature Influence of neutrinos in GR framework : → multi-group + trapping scheme allows for a first spectral information but : - trapping on density (same treatment for different neutrino energy) - processes other than capture (e.g. scattering) missing! P. Blottiau & A.F. Fantina MODE 2010
General Conclusions & Outlooks Microphysics Macrophysics nuclear physics dynamics of collapse Nuclear inputs (microscopic calculation): EoS: extension of LS; different tables (J. Margueron, M. Oertel, S. Goriely, N. Chamel) deleptonization processes electron capture rates (E. Khan) symmetry energy nucleon effective mass and their T-dependence (RPA) (P. Donati, J. Margueron, P. Pizzochero) neutrino physics (P. Blottiau, J. Margueron, Ph. Mellor) Hydrodynamics: One-zone (P. Donati, P. Pizzochero) 1D Newtonian (P. Blottiau, Ph. Mellor) 1D General Relativistic: n transport (J. Novak, J. Pons, P. Blottiau, Ph. Mellor) P. Blottiau & A.F. Fantina MODE 2010
Thank you