Vereinfachung der CBM TRD Elektronik David Emschermann GSI Darmstadt
Outline TRD TDR Geometrie v16b TRD v17a - minimale Anzahl FEB Typen TRD v17b – mit nur einem ROB Typ
TRD v16b components
TRD v16b layer 1
TRD v16b layer 2
TRD geometry v16b The TRD geometry v16b as described in the TDR: SIS 100 1 4 200 280 1384 1112 8992 287744 station layers modules ROBs GBTx FEBs 32ch ASICs channels
TRD geometry v16b 90/9/14/2 50/5/8/1+1 30/6/5/1 64/8/10/2 32/4/5/1 24/3/3/1
64ch signal cable connection 64-pin connectors are solderd to the pad plane flat cables are used to connect to the electonics 64-pin cables interface to 2x 32ch-SPADICs 64 pin cable 0.5 mm pitch AXON FFC 0.50 A 64 / 0150 S 3,5-3,5-08,0-08,0 F AJJ / N
32ch signal cable connection 40-pin connectors (for historical reasons) are solderd to the pad plane flat cables are used to connect to the electonics 40-pin cables interface to 1x 32ch-SPADIC 40 pin cable 0.5 mm pitch AXON FFC 0.50 A 40 / 0046 L 4.0-4.0-22.0-08.0 S ABB
ROB-5 on all small TRD modules TRD v17a - Reduction of FEB types & ROB-5 on all small TRD modules
TRD v17a components
Type 3 v17a modification => Replace FEB-5x1 which only occurs on module type 3 by FEB-5x2 to reduce FEB diversity.
Pad plane type 3 v17a => Instead of 2, read 4 rows per connector. This leads to longer wire traces on the pad plane, larger capacity and slight noise increase. It saves 1 FEB type.
Type 3 v17a pad block =>
for all small TRD modules ROB-5 as default ROB for all small TRD modules
ROB-5 as default readout ROB-5 (70 e-links) small modules: read 3x FEB-5x2 (60 e-links) 60/70 = 86% e-link efficiency large modules: read 4x FEB-8x1 (64 e-links) 64/70 = 91% e-link efficiency Identical FEB-ROB interface on all small or large modules. Use ROB-3 on module type 8.
Type 2 v17a modification => Switching ROB-3 with a ROB-5 gives the opportunity to add one additional FEB 5x2 for free. 89% -> 86% uplink efficiency.
Instead of 5 rows, 6 rows. Make better use of available e-links. Pad plane type 2 v17a => Instead of 5 rows, 6 rows. Make better use of available e-links.
Type 2 pad block v17a => Pad length drops from 16x 2.75 cm + 4x 2.50 cm to 24x 2.25 cm.
Module type 2 v17a 24 rows, 80 columns 1920 pads 1.52 cm² pad size 30x 64-pin connectors 5 connectors per row 4 rows per connector
Instead of 2x ROB-7 use 3x ROB-5. Type 1 v17a modification => Instead of 2x ROB-7 use 3x ROB-5.
Type 1 pad plane v16b/v17a 36 rows, 80 columns 2880 pads 1.01 cm² pad size 45x 64-pin connectors 5 connectors per row 4 rows per connector
TRD geometry v17a 90/9/15/3 60/6/10/2 30/3/5/1 v17a 64/8/10/2 32/4/5/1 16/2/3/1
From v16b to 17a - small 90/9/14/2 50/5/8/2 30/6/5/1 92% 89% 86% v16b e-link efficiency 0/0/+1/+1 +10/+1/+2/2 0/-3/0/0 v17a 86% 86% 86% 90/9/15/3 60/6/10/2 30/3/5/1
From v16b to 17a - large 64/8/10/2 32/4/5/1 24/3/3/1 91% 91% n/a v16b 69% with ROB-5 e-link efficiency unchanged unchanged -8/-1/3/1 v17a 91% 91% 76% 64/8/10/2 32/4/5/1 16/2/3/1
Optimise readout efficiency TRD v17b - Optimise readout efficiency
TRD v17b components 8 -> 7 ASICs
Small module readout v17b Default readout ROB-3 (42 e-links) small modules: read 2x FEB-5x2 (40 e-links) 40/42 = 95% e-link efficiency Multiple of 2 FEBs on modules Identical FEB-ROB interface on all small modules.
Large module readout v17b Default readout ROB-3 (42 e-links) large modules: read 3x FEB-7x1 (42 e-links) 42/42 = 100% e-link efficiency Multiple of 3 FEBs on modules Identical FEB-ROB interface on all large modules.
TRD geometry v17b 100/10/15/5 60/6/9/3 40/4/6/2 63/9/9/3 42/6/6/2 21/3/3/1
From v17a to 17b - small 90/9/15/3 60/6/10/2 30/3/5/1 86% 86% 86% v17a e-link efficiency +10/+1/0/+2 0/0/-1/+1 +10/+1/+1/+1 v17b 95% 95% 95% 100/10/15/5 60/6/9/3 40/4/6/2
From v17a to 17b - large 64/8/10/2 32/4/5/1 16/2/3/1 91% 91% 76% v17a e-link efficiency -1/+1/-1/+1 +10/+2/+1/+1 +5/+1/0/0 v17b 100% 100% 100% 63/9/9/3 42/6/6/2 21/3/3/1
Comparing e-link efficiencies v16b v17a v17b v16b v17b
Geometry summary geometry – module FEB ROB uplink types types types efficiency TDR v16b v17a v17b 6 3 2 3 2 1 ~90% 86% 97% From v16b to v17b numbers increase as follows: from 287744 to 323328 (+12%) from 8992 to 10104 (+12%) from 1112 to 1176 (+ 6%) from 280 to 496 (+77%) from 1384 to 1488 (+ 8%) channels ASICs FEBs ROBs GBTx :
TRD FEBs and ROBs FEB-8-1 - split into: FEB-4-1L & FEB-4-1R Build a FEB-1-2 to check feasibility of FEB-5-2
FEBs for beamtests DESY: Aug 17 FEB-1-1 or FEB-1-2 e-link readout GIF++: Oct 17 FEB-[1-5]-1 e-link readout miniCBM: Sep 18 FEB-7-1 or many FEB-1-1 ROB-3 readout
ROB interconnect (2010) ROB-3 can be arranged as readout busbar, interfacing FEBs without need of additional cabling.
Thank you
Thank you
Backup
TRD v16b - TDR version
Module type 1 FEBs 2880 channels 45x cable connections 9 FEBs a 5x2 ASICs 2x GBTx ROB-7 16 optical links 2x down- 14x uplink 180/196 e-links used 92% uplink efficiency
Type 1 pad plane v16b/v17a 36 rows, 80 columns 2880 pads 1.01 cm² pad size 45x 64-pin connectors 5 connectors per row 4 rows per connector
Type 1 pad block v16b channel sequence determined by angular pad order identical pattern for all footprints of a given module type all vias within a pad row are along a straight line (simpler to seal with glue for gas tightness) 16 pads block width 4 rows a 16 pads = 64 pads
Module type 2 FEBs 1600 channels 25x cable connections 5 FEBs a 5x2 ASICs 1x GBTx ROB-3 1x GBTx ROB-5 10 optical links 2x down- 8x uplink 100/112 e-links used 89% uplink efficiency
Type 2 pad plane v16b 20 rows, 80 columns 1600 pads 1.69 cm² pad size 25x 64-pin connectors 5 connectors per row 4 rows per connector
Type 2 pad block v16b
Module type 3 FEBs 960 channels 30x cable connections 6 FEBs a 5x1 ASICs 1x GBTx ROB-5 6 optical links 1x down- 5x uplink 60/70 e-links used 86% uplink efficiency
Type 3 pad plane v16b 12 rows, 80 columns 960 pads 3.04 cm² pad size 30x 32-pin connectors 5 connectors per row 2 rows per connector
Type 3 pad block v16b This type of connector layout is also used on all large detectors, module types 6,7,8
Module type 6 FEBs 2048 channels 64x cable connections 8 FEBs a 8x1 ASICs 2x GBTx ROB-5 12 optical links 2x down- 10x uplink 128/140 e-links used 91% uplink efficiency
Type 6 pad plane v16b 16 rows, 128 columns 2048 pads 4.13 cm² pad size 64x 32-pin connectors 8 connectors per row 2 rows per connector
Module type 7 FEBs 1024 channels 32x cable connections 4 FEBs a 8x1 ASICs 1x GBTx ROB-5 6 optical links 1x down- 5x uplink 64/70 e-links used 91% uplink efficiency
Type 7 pad plane v16b 8 rows, 128 columns 1024 pads 8.27 cm² pad size 32x 32-pin connectors 8 connectors per row 2 rows per connector
Module type 8 FEBs 768 channels 24x cable connections 3 FEBs a 8x1 ASICs 1x GBTx ROB-3 4 optical links 1x down- 3x uplink 24/42 e-links used (only 1 e-link per Spadic) cannot be done with Spadic v2.0 57% uplink efficiency
Type 8 pad plane v16b 6 rows, 128 columns 768 pads 10.96 cm² pad size 24x 32-pin connectors 8 connectors per row 2 rows per connector
From v16b to 17b - small 90/9/14/2 50/5/8/1+1 30/6/5/1 92% 89% 86% e-link efficiency +10/+1/+1/+1 +10/+1/+1/+1 +10/-2/+1/+1 v17b 95% 95% 95% 100/10/15/5 60/6/9/3 40/4/6/2
From v16b to 17b - large 64/8/10/2 32/4/5/1 24/3/3/1 91% 91% n/a v16b 69% with ROB-5 e-link efficiency -1/+1/-1/+1 +10/+2/+1/+1 -3/0/0/0 v17b 100% 100% 100% 63/9/9/3 42/6/6/2 21/3/3/1
Conclusions
TRD wire geometry TRD 3.5/3.5/5 5 signal collection time Data readout 7/2 7/2 5 signal collection time Data readout 255 ns 230 ns 210 ns TRD 3/3/6 TRD 3.5/3.5/5 TRD 4/4/4 A A D 42% drift 12 mm thickness signal collection in Xe/CO2 (80/20), @ 100V/mm drift
TRD wire geom v17b large TRD 444 4 4 4 Data readout A A D 12 mm 33% drift 12 mm thickness
Pad response function We have aimed at a signal distribution of 10-80-10% between the central and neighboring pads, which is achieved according to beam test data from 2015, see PRF function on the left side.
Summary Compared to the TRD geometry v16b in the TDR, with v17b: the number of FEB types can be reduced to 2 the number of ROB types can be reduced to 1 the e-link efficiency can be increased to 97% the pad size increases from 7.2 mm to 8.2 mm for the large modules (size tested in 2010) the wire geometry of the large modules should be increased to 4/4/4 to keep the PRF at 1/8/1
Recommendation of the referees: From the TRD TDR review Recommendation of the referees: In these slides I will show how this can be achieved.
very difficult to do the routing for smallest pad size Triangular pads 0.5 cm² Super density very difficult to do the routing for smallest pad size
Thank you
Small module readout Pad size 2010: 5 mm x 20 mm 8 mm x 20 mm Pad size FEB-5x2: 540mm / 80 = 6.75 mm Pad size FEB-8x1: 920mm /128 = 7.19 mm Pad size FEB-7x1: 920mm /112 = 8.21 mm