Warm Up Solve each inequality for y. 1. 8x + y < 6

Slides:



Advertisements
Similar presentations
Solving Systems of Linear Inequalities Warm Up Lesson Presentation
Advertisements

Solving Linear Inequalities
Solving Linear Inequalities
How to Graph a Linear Inequality. Linear Inequalities linear inequality  A linear inequality describes a region of the coordinate plane that has a boundary.
Objective Graph and solve systems of linear inequalities in two variables.
Warm-Up Exercises 1. Solve |x – 6| = Solve |x + 5| – 8 = 2. ANSWER 2, 10 ANSWER –15, 5 3. A frame will hold photographs that are 5 inches by 8 inches.
Objective: To graph linear inequalities in two variables.
Warm Up Graph each inequality. 1. x > –5 2. y ≤ 0
Warm Up Evaluate each expression for x = 1 and y =–3.
4.3.1 – Systems of Inequalities. Recall, we solved systems of equations What defined a system? How did you find the solutions to the system?
6.5 S OLVING L INEAR I NEQUALITIES 6.6 S OLVING S YSTEMS OF I NEQUALITIES.
6.6 Systems of Linear Inequalities Word Problems
Objective Graph and solve systems of linear inequalities in two variables. A system of linear inequalities is a set of two or more linear inequalities.
A linear inequality is similar to a linear equation, but the equal sign is replaced with an inequality symbol. A solution of a linear inequality is any.
Objective Graph and solve linear inequalities in two variables.
Solving Systems by Graphing
Warm Up Graph each inequality. 1. x > – y ≤ 0.
Solving Linear Inequalities
+ Lesson 6-5 Linear Inequalities November 17, 2014.
Objective Graph and solve systems of linear inequalities in two variables.
A linear inequality in two variables relates two variables using an inequality symbol. Example: y > 2x – 4. Its graph is a region of the coordinate plane.
1 Warm Up 1.Solve and graph |x – 4| < 2 2. Solve and graph |2x – 3| > 1 2x – x 4 x – 4 > -2 and x – 4 < x > 2 and x < 6.
Solving Systems of Linear Inequalities
Holt Algebra Solving Systems of Linear Inequalities Graph and solve systems of linear inequalities in two variables. Objective system of linear inequalities.
Solving Systems of 6-6 Linear Inequalities Warm Up Lesson Presentation
Learning Target Students will be able to: Graph and solve systems of linear inequalities in two variables.
ALGEBRA 1 Lesson 6-5 Warm-Up. ALGEBRA 1 “Linear Inequalities” (6-5) What is the solution of an inequality? What is a linear inequality? Solution of an.
Good Morning Systems of Inequalities. Holt McDougal Algebra 1 Solving Linear Inequalities Warm Up Graph each inequality. 1. x > –5 2. y ≤ 0 3. Write –6x.
I can graph linear inequalities on the coordinate plane
Warm Up Graph each inequality. 1. x > –5 2. y ≤ 0
Holt Algebra Solving Systems of Linear Inequalities Warm Up(Add to HW &Pass Back Paper) Solve each inequality for y. 1. 8x + y < x – 2y > 10.
Chapter 6: Systems of Equations and Inequalities
Graphing Linear Inequations y > y is greater than  all points above the line are a solution y < y is less than  all points below the line are a solution.
Algebra 2 Systems of Inequalities Lesson 3-3. Goals Goal To solve a linear systems of linear inequalities. Rubric Level 1 – Know the goals. Level 2 –
1 Pottery How many bowls and vases can you make from a fixed amount of clay? You will see how a linear inequality can be used to answer this question.
Systems of Equations & Inequalities
Solving Linear Inequalities
Warm Up Solve each inequality for y. 1. 8x + y < 6
Solving Systems of 6-6 Linear Inequalities Warm Up Lesson Presentation
Solving Systems of Linear Inequalities Warm Up Lesson Presentation
Graphing Linear Inequalities
Warm Up Evaluate each expression for x = 1 and y =–3.
2.6 Linear Inequalities in Two Variables
Solving Linear Inequalities
Solving Linear Inequalities
Lesson Objective: I will be able to …
Solving Systems of 5-6 Linear Inequalities Warm Up Lesson Presentation
Objective Graph and solve systems of linear inequalities in two variables.
3-3 Solving Systems of Linear Inequalities Warm Up Lesson Presentation
Solving Systems of 5-6 Linear Inequalities Warm Up Lesson Presentation
3-3 Solving Systems of Linear Inequalities Warm Up Lesson Presentation
Solving Systems of 5-6 Linear Inequalities Warm Up Lesson Presentation
Warm Up Graph each inequality. 1. x > –5 2. y ≤ 0
Objective Graph and solve linear inequalities in two variables.
Solving Linear Inequalities
Graphing Systems of Inequalities
Objectives Identify solutions of linear equations in two variables.
Solving Linear Inequalities
Linear Inequalities in Two Variables 2-5
Bell ringer What do you remember about systems of equations…
Warm Up Solve each inequality for y. 1. 8x + y < 6
A system of linear inequalities is a set of two or more linear inequalities containing two or more variables. The solutions of a system of linear inequalities.
Warm Up Find the intercepts of each line. 1. 3x + 2y = 18
Algebra 1 Section 7.8.
Linear Inequalities in Two Variables
Learning Target Students will be able to: Graph and solve linear inequalities in two variables.
Warm-Up Monday, October 7th Solve for y -4x+7y=28 Solve by Elimination
Solving Linear Inequalities
Presentation transcript:

Warm Up Solve each inequality for y. 1. 8x + y < 6 2. 3x – 2y > 10 3. Graph the solutions of 4x + 3y > 9. y < –8x + 6

A system of linear inequalities is a set of two or more linear inequalities containing two or more variables. The solutions of a system of linear inequalities consists of all the ordered pairs that satisfy all the linear inequalities in the system.

Example 1A: Identifying Solutions of Systems of Linear Inequalities 1. Tell whether the ordered pair is a solution of the given system. y ≤ –3x + 1 (–1, –3); y < 2x + 2 (–1, –3) (–1, –3) y ≤ –3x + 1 y < 2x + 2 –3 –3(–1) + 1 –3 3 + 1 –3 4 ≤  –3 –2 + 2 –3 0 <  –3 2(–1) + 2 (–1, –3) is a solution to the system because it satisfies both inequalities.

Example 1B: Identifying Solutions of Systems of Linear Inequalities 2. Tell whether the ordered pair is a solution of the given system. y < –2x – 1 (–1, 5); y ≥ x + 3 (–1, 5) (–1, 5) y < –2x – 1 5 2 ≥  5 –1 + 3 y ≥ x + 3 5 –2(–1) – 1 5 2 – 1 5 1 <  (–1, 5) is not a solution to the system because it does not satisfy both inequalities.

An ordered pair must be a solution of all inequalities to be a solution of the system. Remember!

  Check It Out! Example 1a 3. Tell whether the ordered pair is a solution of the given system. y < –3x + 2 (0, 1); y ≥ x – 1 (0, 1) (0, 1) y < –3x + 2 y ≥ x – 1 1 –3(0) + 2 1 0 + 2 1 2 < 1 –1 ≥  1 0 – 1  (0, 1) is a solution to the system because it satisfies both inequalities.

  Check It Out! Example 1b 4. Tell whether the ordered pair is a solution of the given system. y > –x + 1 (0, 0); y > x – 1 (0, 0) (0, 0) y > –x + 1 0 –1 ≥  0 0 – 1 y > x – 1 0 –1(0) + 1 0 0 + 1 0 1 >  (0, 0) is not a solution to the system because it does not satisfy both inequalities.

To show all the solutions of a system of linear inequalities, graph the solutions of each inequality. The solutions of the system are represented by the overlapping shaded regions. Below are graphs of Examples 1A and 1B on p. 421.

Example 2A: Solving a System of Linear Inequalities by Graphing 5. Graph the system of linear inequalities. Give two ordered pairs that are solutions and two that are not solutions. (–1, 4) (2, 6)  y ≤ 3 y > –x + 5  (6, 3) (8, 1) y ≤ 3 y > –x + 5 Graph the system. (8, 1) and (6, 3) are solutions. (–1, 4) and (2, 6) are not solutions.

Example 2B: Solving a System of Linear Inequalities by Graphing 6. Graph the system of linear inequalities. Give two ordered pairs that are solutions and two that are not solutions. –3x + 2y ≥ 2 y < 4x + 3 –3x + 2y ≥ 2 Write the first inequality in slope-intercept form. 2y ≥ 3x + 2

(0, 0) and (–4, 5) are not solutions. Example 2B Continued Graph the system.  (2, 6) (1, 3) y < 4x + 3  (0, 0) (–4, 5) (2, 6) and (1, 3) are solutions. (0, 0) and (–4, 5) are not solutions.

(–3, 1) and (–1, –4) are not solutions. Check It Out! Example 2a 7. Graph the system of linear inequalities. Give two ordered pairs that are solutions and two that are not solutions.  (3, 3) (4, 4) y ≤ x + 1 y > 2 (–3, 1)  (–1, –4) y ≤ x + 1 y > 2 Graph the system. (3, 3) and (4, 4) are solutions. (–3, 1) and (–1, –4) are not solutions.

Check It Out! Example 2b 8. Graph the system of linear inequalities. Give two ordered pairs that are solutions and two that are not solutions. y > x – 7 3x + 6y ≤ 12 3x + 6y ≤ 12 Write the second inequality in slope-intercept form. 6y ≤ –3x + 12 y ≤ x + 2

Check It Out! Example 2b Continued Graph the system. y > x − 7 y ≤ – x + 2  (4, 4) (1, –6)  (0, 0) (3, –2) (0, 0) and (3, –2) are solutions. (4, 4) and (1, –6) are not solutions.

In Lesson 6-4, you saw that in systems of linear equations, if the lines are parallel, there are no solutions. With systems of linear inequalities, that is not always true.

Example 3A: Graphing Systems with Parallel Boundary Lines 9. Graph the system of linear inequalities. y ≤ –2x – 4 y > –2x + 5 This system has no solutions.

Example 3B: Graphing Systems with Parallel Boundary Lines 10. Graph the system of linear inequalities. y > 3x – 2 y < 3x + 6 The solutions are all points between the parallel lines but not on the dashed lines.

Example 3C: Graphing Systems with Parallel Boundary Lines 11. Graph the system of linear inequalities. y ≥ 4x + 6 y ≥ 4x – 5 The solutions are the same as the solutions of y ≥ 4x + 6.

Check It Out! Example 3a 12. Graph the system of linear inequalities. y > x + 1 y ≤ x – 3 This system has no solutions.

Check It Out! Example 3b 13. Graph the system of linear inequalities. y ≥ 4x – 2 y ≤ 4x + 2 The solutions are all points between the parallel lines including the solid lines.

Check It Out! Example 3c 14. Graph the system of linear inequalities. y > –2x + 3 y > –2x The solutions are the same as the solutions of y ≥ –2x + 3.

Example 4: Application In one week, Ed can mow at most 9 times and rake at most 7 times. He charges $20 for mowing and $10 for raking. He needs to make more than $125 in one week. Show and describe all the possible combinations of mowing and raking that Ed can do to meet his goal. List two possible combinations. Earnings per Job ($) Mowing 20 Raking 10

Example 4 Continued Step 1 Write a system of inequalities. Let x represent the number of mowing jobs and y represent the number of raking jobs. x ≤ 9 He can do at most 9 mowing jobs. y ≤ 7 He can do at most 7 raking jobs. 20x + 10y > 125 He wants to earn more than $125.

Example 4 Continued Step 2 Graph the system. The graph should be in only the first quadrant because the number of jobs cannot be negative. Solutions

Example 4 Continued Step 3 Describe all possible combinations. All possible combinations represented by ordered pairs of whole numbers in the solution region will meet Ed’s requirement of mowing, raking, and earning more than $125 in one week. Answers must be whole numbers because he cannot work a portion of a job. Step 4 List the two possible combinations. Two possible combinations are: 7 mowing and 4 raking jobs 8 mowing and 1 raking jobs

An ordered pair solution of the system need not have whole numbers, but answers to many application problems may be restricted to whole numbers. Helpful Hint

Check It Out! Example 4 At her party, Alice is serving pepper jack cheese and cheddar cheese. She wants to have at least 2 pounds of each. Alice wants to spend at most $20 on cheese. Show and describe all possible combinations of the two cheeses Alice could buy. List two possible combinations. Price per Pound ($) Pepper Jack 4 Cheddar 2

Check It Out! Example 4 Continued Step 1 Write a system of inequalities. Let x represent the pounds of cheddar and y represent the pounds of pepper jack. x ≥ 2 She wants at least 2 pounds of cheddar. y ≥ 2 She wants at least 2 pounds of pepper jack. 2x + 4y ≤ 20 She wants to spend no more than $20.

Check It Out! Example 4 Continued Step 2 Graph the system. The graph should be in only the first quadrant because the amount of cheese cannot be negative. Solutions

Step 3 Describe all possible combinations. All possible combinations within the gray region will meet Alice’s requirement of at most $20 for cheese and no less than 2 pounds of either type of cheese. Answers need not be whole numbers as she can buy fractions of a pound of cheese. Step 4 Two possible combinations are (2, 3) and (4, 2.5). 2 cheddar, 3 pepper jack or 4 cheddar, 2.5 pepper jack

Lesson Quiz: Part I y < x + 2 1. Graph . 5x + 2y ≥ 10 Give two ordered pairs that are solutions and two that are not solutions. Possible answer: solutions: (4, 4), (8, 6); not solutions: (0, 0), (–2, 3)

Lesson Quiz: Part II 2. Dee has at most $150 to spend on restocking dolls and trains at her toy store. Dolls cost $7.50 and trains cost $5.00. Dee needs no more than 10 trains and she needs at least 8 dolls. Show and describe all possible combinations of dolls and trains that Dee can buy. List two possible combinations.

Lesson Quiz: Part II Continued Reasonable answers must be whole numbers. Possible answer: (12 dolls, 6 trains) and (16 dolls, 4 trains) Solutions