Label your paper DNA 1.

Slides:



Advertisements
Similar presentations
4.2: Graphs of Quadratic Functions in Vertex or Intercept Form
Advertisements

9-1 Graphing Quadratic Functions
Sketching a Quadratic Graph SWBAT will use equation to find the axis of symmetry, the coordinates of points at which the curve intersects the x- axis,
EXAMPLE 1 Find the axis of symmetry and the vertex Consider the function y = – 2x x – 7. a. Find the axis of symmetry of the graph of the function.
9-1 Graphing Quadratic Functions
3. Graph Quadratic Functions in Standard Form 3.1 Graph Quadratic Functions in Standard Form WEDNESDAY JAN 26 TH p. 56.
Graphing Quadratic Functions in Standard Form y = ax 2 + bx + c.
9.1: GRAPHING QUADRATICS ALGEBRA 1. OBJECTIVES I will be able to graph quadratics: Given in Standard Form Given in Vertex Form Given in Intercept Form.
9.3 Graphing Quadratic Functions
Graphing Quadratic Equations
6.1 Graphing Quadratic Functions Parabola Axis of symmetry Vertex.
7-3 Graphing quadratic functions
5.2 Graphing Quadratic Functions in Vertex Form 12/5/12.
EXAMPLE 3 Graph a function of the form y = ax 2 + bx + c Graph y = 2x 2 – 8x + 6. SOLUTION Identify the coefficients of the function. The coefficients.
Unit 3-1: Graphing Quadratic Functions Learning Target: I will graph a quadratic equation and label its key features.
WARM UP What is the x-coordinate of the vertex? 1.y = -2x 2 + 8x – 5 2.y = x 2 + 3x -2 4.
Warm Up Lesson 4.1 Find the x-intercept and y-intercept
Graphing quadratic functions part 2. X Y I y = 3x² - 6x + 2 You have to find the vertex before you can graph this function Use the formula -b 2a a = 3.
CHAPTER 10 LESSON OBJECTIVES. Objectives 10.1 Students will be able to: Identify quadratic functions and determine whether they have a minimum or maximum.
5-1 Graphing Quadratic Functions Algebra II CP. Vocabulary Quadratic function Quadratic term Linear term Constant term Parabola Axis of symmetry Vertex.
Quadratic Functions. 1. The graph of a quadratic function is given. Choose which function would give you this graph:
How does the value of a affect the graphs?
Graphing Quadratic Functions. The graph of any Quadratic Function is a Parabola To graph a quadratic Function always find the following: y-intercept.
Chapter 4: Polynomials Quadratic Functions (Section 4.1)
Quadratic Functions Sections Quadratic Functions: 8.1 A quadratic function is a function that can be written in standard form: y = ax 2 + bx.
GRAPH QUADRATIC FUNCTIONS. FIND AND INTERPRET THE MAXIMUM AND MINIMUM VALUES OF A QUADRATIC FUNCTION. 5.1 Graphing Quadratic Functions.
1. Whether the parabola opens up or down. 2. The y-intercept. 3. The axis of symmetry 4. The vertex 5. The max/min value 6. The x-intercept(s) Then sketch.
How To Graph Quadratic Equations Standard Form.
Do Now Find the value of y when x = -1, 0, and 2. y = x2 + 3x – 2
Label your paper DNA 1.
Graphing Quadratic Functions in Standard Form
Algebra Lesson 10-2: Graph y = ax2 + bx + c
Chapter 4: Quadratic Functions and Equations
4.2 a Standard Form of a Quadratic Function
2-5 Absolute Value Functions and Graphs
2.1: Graphing Absolute Value Functions
8.4 Graphing.
Graph Square Root and Cube Root Functions
Y Label each of the components of the parabola A: ________________ B: ________________ C: ________________ C B B 1 2.
Parabolas 4.2. Parabolas 4.2 Standard Form of Parabolic Equations Standard Form of Equation   Axis of Symmetry Vertex Direction Parabola Opens up or.
ALGEBRA I : SECTION 9-1 (Quadratic Graphs and Their Properties)
Label your paper DNA 2.
9.1 Graphing Quadratic Functions
parabola up down vertex Graph Quadratic Equations axis of symmetry
Quadratic Functions.
Label your paper DNA 5.
Label your paper DNA 5.
DNA 7 Label your paper Copy the notes below
Label your paper DNA 1 WARM UP….
Label your paper DNA 1.
Find the x-coordinate of the vertex
Warm Up Graph:
Section 9.1 Day 4 Graphing Quadratic Functions
Section 9.1 Day 2 Graphing Quadratic Functions
y x y = x + 2 y = x + 4 y = x – 1 y = -x – 3 y = 2x y = ½x y = 3x + 1
Section 9.1 Day 2 Graphing Quadratic Functions
12.4 Quadratic Functions Goal: Graph Quadratic functions
8.4 Graphing.
Section 9.1 Day 3 Graphing Quadratic Functions
Graphing Quadratic Functions
Label your paper DNA 3.
Graphing Quadratics of ax2 +bx + c
Section 10.2 “Graph y = ax² + bx + c”
3:20 3:15 3:10 3:25 3:30 3:40 3:35 3:05 3:00 2:35 2:30 2:40 2:45 2:55 2:50 3:45 3:50 4:45 4:40 4:35 4:50 4:55 5:00 timer 5:00 4:30 4:25 4:00 3:55 4:05.
Label your paper DNA 4.
Analysis of Absolute Value Functions Date:______________________
Warm Up.
Warm up Graph the Function using a table Use x values -1,0,1,2,3
Label your paper DNA 7.
How To Graph Quadratic Equations.
Presentation transcript:

Label your paper DNA 1

What goes up??? …. ….MUST COME DOWN!

To start graphing PARABOLA’s, you make a T-Chart… but what numbers do you pick for the x’s??? You FIND THE VERTEX X= , Y=

Now you pick numbers that are smaller than the VERTEX “x” and bigger than the VERTEX “x”. HOW DO YOU FIND “x” again????

Label your paper! Name Date Algebra 1 Period Ch. 9-1 Classwork

Classwork Page 475 : # 10, 12, 14 ONLY FIND THE VERTEX for each 4:10 Time Left: 4:10 4:05 4:15 4:00 4:25 4:30 3:55 4:20 3:40 3:25 3:20 3:15 3:30 3:35 3:45 4:35 3:50 4:45 5:40 5:35 5:30 5:45 5:50 6:00 timer 6:00 5:55 5:25 5:20 4:55 4:50 3:10 5:00 5:05 5:15 5:10 4:40 3:00 0:55 0:50 0:45 1:00 1:05 1:20 1:15 1:10 0:40 0:35 0:10 0:05 0:00 0:15 0:20 0:30 0:25 1:25 1:30 2:30 2:25 2:20 2:35 2:40 2:55 2:50 2:45 2:15 2:10 1:45 1:40 1:35 1:50 1:55 2:05 2:00 3:05

Classwork Page 475 : # 11, 13, 15 4:00 4:05 3:55 4:10 4:20 4:30 4:25 Time Left: 4:00 4:05 3:55 4:10 4:20 4:30 4:25 3:50 4:15 3:40 3:20 3:15 3:10 3:25 3:30 4:35 3:35 3:45 4:40 5:40 5:35 5:30 5:45 5:50 6:00 timer 6:00 5:55 5:25 5:20 4:55 4:50 4:45 5:00 5:05 5:15 5:10 3:05 2:55 0:55 0:50 0:45 1:00 1:05 1:20 1:15 1:10 0:40 0:35 0:10 0:05 0:00 0:15 0:20 0:30 0:25 1:25 1:30 2:30 2:25 2:20 2:35 2:40 2:50 2:45 2:15 2:10 1:45 1:40 1:35 1:50 1:55 2:05 2:00 3:00

Classwork 8:05 8:00 8:10 7:55 7:45 7:35 7:40 8:15 7:50 8:25 8:45 8:50 Page 475 : # 10, 12, 14 Time Left: 8:05 8:00 8:10 7:55 7:45 7:35 7:40 8:15 7:50 8:25 8:45 8:50 8:55 8:40 8:35 7:30 8:30 8:20 7:20 6:25 6:30 6:35 6:20 6:15 6:05 6:10 6:40 6:45 7:10 7:15 9:00 7:05 7:00 6:50 6:55 7:25 9:10 11:10 11:15 11:20 11:05 11:00 10:45 10:50 10:55 11:25 11:30 11:55 12:00 12:00 timer 11:50 11:45 11:35 11:40 10:40 10:35 9:35 9:40 9:45 9:30 9:25 6:00 9:15 9:20 9:50 9:55 10:20 10:25 10:30 10:15 10:10 10:00 10:05 9:05 5:50 1:50 1:55 2:00 1:45 1:40 1:30 1:35 2:05 2:10 2:35 2:40 2:45 2:30 2:25 2:15 2:20 1:25 1:20 0:20 0:25 0:30 0:15 0:10 0:00 0:05 0:35 0:40 1:05 1:10 1:15 1:00 0:55 0:45 0:50 5:55 2:50 4:50 4:55 5:00 4:45 4:40 4:30 4:35 5:05 5:10 5:35 5:40 5:45 5:30 5:25 5:15 5:20 2:55 4:25 3:20 3:25 3:30 3:15 3:10 3:00 3:05 4:20 3:35 4:05 4:10 4:15 3:40 4:00 3:55 3:45 3:50 FINISH THE TABLE OF (5) VALUES VERTEX GOES IN MIDDLE!

HOMEWORK Page 475 : # 11, 13, 15 FINISH THE TABLE OF (5) VALUES VERTEX GOES IN MIDDLE!

Copy then complete the function table using the rule .   1 2 3 4 5 6 7 8 13 6 1 -2 -3 -2 1 6 13 Use your ID card to draw, scale and label a set of axes on your paper! Plot the points from the table onto your graph.

y 7 6 5 4 3 2 1 -2 -3 -4 -5 -6 8 x -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 -1 (4,-3)   1 2 3 4 5 6 7 8 13 6 1 -2 -3 -2 1 6 13 y -7

On your graph Make sure you put arrows on the end of your graph Write the equation next to the parabola Label the vertex and write its coordinates Circle and identify the roots Draw the axis of symmetry and write its equation Does the graph have a maximum or minimum? What is it? Identify the domain and range