Yukio Nishimura, Steve I. Perlmutter, Ryan W. Eaton, Eberhard E. Fetz 

Slides:



Advertisements
Similar presentations
Timing and Specificity of Feed-Forward Inhibition within the LGN
Advertisements

Volume 64, Issue 6, Pages (December 2009)
Lixia Gao, Kevin Kostlan, Yunyan Wang, Xiaoqin Wang  Neuron 
Volume 32, Issue 2, Pages (October 2001)
Heather L. Dean, Maureen A. Hagan, Bijan Pesaran  Neuron 
Volume 86, Issue 3, Pages (May 2015)
Ganesh Vigneswaran, Roland Philipp, Roger N. Lemon, Alexander Kraskov 
Neuronal Correlates of Metacognition in Primate Frontal Cortex
Guangying K. Wu, Pingyang Li, Huizhong W. Tao, Li I. Zhang  Neuron 
A Source for Feature-Based Attention in the Prefrontal Cortex
Vincent Jacob, Julie Le Cam, Valérie Ego-Stengel, Daniel E. Shulz 
Endocannabinoids Control the Induction of Cerebellar LTD
Volume 36, Issue 5, Pages (December 2002)
Enhancement of Spike-Timing Precision by Autaptic Transmission in Neocortical Inhibitory Interneurons  Alberto Bacci, John R. Huguenard  Neuron  Volume.
The Generation of Direction Selectivity in the Auditory System
Heather L. Dean, Maureen A. Hagan, Bijan Pesaran  Neuron 
Aaron C. Koralek, Rui M. Costa, Jose M. Carmena  Neuron 
A Code for Cross-Modal Working Memory
Injecting Instructions into Premotor Cortex
Perirhinal-Hippocampal Connectivity during Reactivation Is a Marker for Object-Based Memory Consolidation  Kaia L. Vilberg, Lila Davachi  Neuron  Volume.
Motor Recovery after Spinal Cord Injury Enhanced by Strengthening Corticospinal Synaptic Transmission  Karen L. Bunday, Monica A. Perez  Current Biology 
Vincent B. McGinty, Antonio Rangel, William T. Newsome  Neuron 
Differential Impact of Behavioral Relevance on Quantity Coding in Primate Frontal and Parietal Neurons  Pooja Viswanathan, Andreas Nieder  Current Biology 
Feature- and Order-Based Timing Representations in the Frontal Cortex
Volume 96, Issue 4, Pages e5 (November 2017)
Lior Cohen, Gideon Rothschild, Adi Mizrahi  Neuron 
A Role for the Superior Colliculus in Decision Criteria
Volume 49, Issue 3, Pages (February 2006)
Aryeh Hai Taub, Rita Perets, Eilat Kahana, Rony Paz  Neuron 
Gamma and the Coordination of Spiking Activity in Early Visual Cortex
New Experiences Enhance Coordinated Neural Activity in the Hippocampus
Volume 95, Issue 1, Pages e3 (July 2017)
Jianing Yu, David Ferster  Neuron 
Annabelle C. Singer, Loren M. Frank  Neuron 
Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity in a Developing Retinotectal System  Yangling Mu, Mu-ming Poo  Neuron 
Directional Selectivity Is Formed at Multiple Levels by Laterally Offset Inhibition in the Rabbit Retina  Shelley I. Fried, Thomas A. Mu¨nch, Frank S.
SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells  Gen Ohtsuki, Claire Piochon, John P. Adelman,
Ju Tian, Naoshige Uchida  Neuron 
Functional Microcircuit Recruited during Retrieval of Object Association Memory in Monkey Perirhinal Cortex  Toshiyuki Hirabayashi, Daigo Takeuchi, Keita.
Gating of Fear in Prelimbic Cortex by Hippocampal and Amygdala Inputs
Volume 87, Issue 2, Pages (July 2015)
Slow-γ Rhythms Coordinate Cingulate Cortical Responses to Hippocampal Sharp-Wave Ripples during Wakefulness  Miguel Remondes, Matthew A. Wilson  Cell.
Ethan S. Bromberg-Martin, Masayuki Matsumoto, Okihide Hikosaka  Neuron 
Feng Han, Natalia Caporale, Yang Dan  Neuron 
Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors  Shannon J. Moore, Donald C. Cooper,
Serial, Covert Shifts of Attention during Visual Search Are Reflected by the Frontal Eye Fields and Correlated with Population Oscillations  Timothy J.
Broca's Area and the Hierarchical Organization of Human Behavior
Receptive-Field Modification in Rat Visual Cortex Induced by Paired Visual Stimulation and Single-Cell Spiking  C. Daniel Meliza, Yang Dan  Neuron  Volume.
Ryan G. Natan, Winnie Rao, Maria N. Geffen  Cell Reports 
Volume 86, Issue 3, Pages (May 2015)
Bassam V. Atallah, William Bruns, Matteo Carandini, Massimo Scanziani 
Timescales of Inference in Visual Adaptation
The Normalization Model of Attention
Volume 72, Issue 6, Pages (December 2011)
Ethan S. Bromberg-Martin, Okihide Hikosaka  Neuron 
Does Neuronal Synchrony Underlie Visual Feature Grouping?
Hiroyuki K. Kato, Shea N. Gillet, Jeffry S. Isaacson  Neuron 
Masayuki Matsumoto, Masahiko Takada  Neuron 
Serotonergic Modulation of Sensory Representation in a Central Multisensory Circuit Is Pathway Specific  Zheng-Quan Tang, Laurence O. Trussell  Cell Reports 
Sylvain Chauvette, Josée Seigneur, Igor Timofeev  Neuron 
Volume 58, Issue 1, Pages (April 2008)
Transient Slow Gamma Synchrony Underlies Hippocampal Memory Replay
Kristy A. Sundberg, Jude F. Mitchell, John H. Reynolds  Neuron 
Synaptic Mechanisms of Forward Suppression in Rat Auditory Cortex
Lixia Gao, Kevin Kostlan, Yunyan Wang, Xiaoqin Wang  Neuron 
The Postsaccadic Unreliability of Gain Fields Renders It Unlikely that the Motor System Can Use Them to Calculate Target Position in Space  Benjamin Y.
Jan Benda, André Longtin, Leonard Maler  Neuron 
Volume 99, Issue 1, Pages e4 (July 2018)
Supratim Ray, John H.R. Maunsell  Neuron 
Volume 95, Issue 5, Pages e4 (August 2017)
Presentation transcript:

Spike-Timing-Dependent Plasticity in Primate Corticospinal Connections Induced during Free Behavior  Yukio Nishimura, Steve I. Perlmutter, Ryan W. Eaton, Eberhard E. Fetz  Neuron  Volume 80, Issue 5, Pages 1301-1309 (December 2013) DOI: 10.1016/j.neuron.2013.08.028 Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 1 Experimental Design and Protocol (A) Schematic showing action potentials of CM cell triggering intraspinal stimuli via neurochip (NC). (B) Cortical recording (top) and SpTA of EMG (bottom) for CM spikes followed after delay of 25 ms by spinal stimulus. SpTA shows postspike facilitation and poststimulus response in same target muscle. (C) SpTAs of EMG acquired before (day 0) and after (day 1) a 22 hr period of conditioning, showing analysis interval (pink square), baseline ± 2 SD of SpTA (horizontal gray lines), and MPI above baseline of feature (horizontal red lines and black numbers). Conditioning increased MPI by 66% (p = 0.0003). Vertical bar calibrates 25% of baseline. Drawings represent monkey performing task on days 0 and 1 and behaving freely during 21.8 hr of conditioning, with mean spike frequency of 7.5 Hz. Neuron 2013 80, 1301-1309DOI: (10.1016/j.neuron.2013.08.028) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 2 Strengthening of Corticospinal Connections (A) SpTAs show PSpF in two flexor muscles and PSpS in an extensor. The PSpFs are superimposed on facilitatory synchrony effects in both flexor muscles. Numbers give MPI of the SpREs; vertical line corresponds to trigger event. First two columns show repeatability of SpREs for 2 successive days without intervening conditioning (day −1 and day 0). Open arrows designate periods without conditioning. Solid black arrows designate conditioning periods (50 μA stimuli and 12 ms delay); duration and average stimulus frequencies are given above arrows. Colors of SpTAs for subsequent days indicate significance of changes relative to day 0: red, p < 0.01; blue, p < 0.05; and black, no significant difference. Scales at right calibrate percentage of baseline. Numbers give MPI. FCU, flexor carpi ulnaris; PL, palmaris longus; ECR, extensor carpi radialis; n, number of triggering spikes for all SpTAs. (B) Collision test for CM cell in (A). Spontaneous spikes in cell triggered two spinal stimuli (arrows) with intensity sufficient to trigger antidromic spikes (seen after second stimulus); antidromic response for first stimulus is absent due to collision. The current intensity (360 μA) was higher than that used during conditioning. (C) PSpEs for another CM cell, showing pure PSpF without synchrony. Conditioning times are 3.5 hr on day 0 and 3 hr on day 1. Neuron 2013 80, 1301-1309DOI: (10.1016/j.neuron.2013.08.028) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 3 Summary of Conditioning Effect on Output (A) MPI of spike-related effects in SpTAs compiled before and after conditioning (pre-MPI and post-MPI). Facilitation is shown in (a); suppression is shown in (b). Data points are color coded for different spike-stimulus delays. Data points above the dashed line indicate SpREs that increased after conditioning. The red arrow identifies session in Figure 2A. For sessions involving multiple days of conditioning, the postconditioning values were obtained after the last conditioning period. (B) Average MPI on pre- and postconditioning day, and 1 and 2 days after the end of conditioning, for facilitation (a) and suppression (b). Error bars show SD. Significance of comparisons is given above horizontal bars. (C) Individual MPI values in successive days for cell-muscle pairs that were documented for 2 postconditioning days, for facilitation (a) and suppression (b). Open circles for subsequent days indicate significant changes (p < 0.05) relative to day 0. Neuron 2013 80, 1301-1309DOI: (10.1016/j.neuron.2013.08.028) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 4 Changes in Spike-Related Effects as Function of Delay between Spikes and Stimuli The graphs plot average differences in MPI (ΔMPI) for pre- and postcondition days (including the unchanged cases). Numbers of separate observations are shown in parentheses. Error bars show SD. Asterisks denote values significantly different from 0 (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). (A) Spike-related facilitation. (B) Spike-related suppression. For comparison, plots that include only cases in which the PSpEs changed significantly are shown in Figure S3. Neuron 2013 80, 1301-1309DOI: (10.1016/j.neuron.2013.08.028) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 5 Decreases in SpRE Produced by Intraspinal Stimuli with Zero Delay after Spike The two cells were recorded in different monkeys. Data were obtained in Sessions 3 (A) and 4 (B) in Table S1. Note the decrease in MPI values after conditioning. ED45, extensor digitorum 4 and 5; FDP, flexor digitorum profundus. Neuron 2013 80, 1301-1309DOI: (10.1016/j.neuron.2013.08.028) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 6 Proposed Mechanisms for Conditioning Effect Spike-triggered stimulation with appropriate positive delay produces a strengthening of CM cell terminals, increasing direct excitatory postspike effects. Changes in inhibitory effects could involve terminals of CM cell and/or inhibitory interneuron. The strengthened terminals are illustrated in red. Neuron 2013 80, 1301-1309DOI: (10.1016/j.neuron.2013.08.028) Copyright © 2013 Elsevier Inc. Terms and Conditions