Lecture 2 Part 2 Process Synchronization

Slides:



Advertisements
Similar presentations
Operating Systems Part III: Process Management (Process Synchronization)
Advertisements

Ch. 7 Process Synchronization (1/2) I Background F Producer - Consumer process :  Compiler, Assembler, Loader, · · · · · · F Bounded buffer.
Chapter 6 Process Synchronization Bernard Chen Spring 2007.
Chapter 6: Process Synchronization
Background Concurrent access to shared data can lead to inconsistencies Maintaining data consistency among cooperating processes is critical What is wrong.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 5: Process Synchronization.
5.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 5: CPU Scheduling.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 6: Process Synchronization.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 5: Process Synchronization.
Process Synchronization. Module 6: Process Synchronization Background The Critical-Section Problem Peterson’s Solution Synchronization Hardware Semaphores.
Chapter 6: Process Synchronization. Outline Background Critical-Section Problem Peterson’s Solution Synchronization Hardware Semaphores Classic Problems.
Silberschatz, Galvin and Gagne ©2007 Operating System Concepts with Java – 7 th Edition, Nov 15, 2006 Process Synchronization (Or The “Joys” of Concurrent.
Process Synchronization
02/23/2004CSCI 315 Operating Systems Design1 Process Synchronization Notice: The slides for this lecture have been largely based on those accompanying.
02/17/2010CSCI 315 Operating Systems Design1 Process Synchronization Notice: The slides for this lecture have been largely based on those accompanying.
Synchronization Solutions
Instructor: Umar KalimNUST Institute of Information Technology Operating Systems Process Synchronization.
Chapter 6: Process Synchronization. 6.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 8, 2005 Module 6: Process Synchronization.
02/19/2007CSCI 315 Operating Systems Design1 Process Synchronization Notice: The slides for this lecture have been largely based on those accompanying.
Adopted from and based on Textbook: Operating System Concepts – 8th Edition, by Silberschatz, Galvin and Gagne Updated and Modified by Dr. Abdullah Basuhail,
Operating Systems CSE 411 CPU Management Oct Lecture 13 Instructor: Bhuvan Urgaonkar.
Chapter 6: Process Synchronization. 6.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 8, 2005 Background Concurrent.
6.3 Peterson’s Solution The two processes share two variables: Int turn; Boolean flag[2] The variable turn indicates whose turn it is to enter the critical.
1 Chapter 6: Process Synchronization Background The Critical-Section Problem Peterson’s Solution Special Machine Instructions for Synchronization Semaphores.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization.
Chap 6 Synchronization. Background Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9 th Edition Chapter 5: Process Synchronization.
Chapter 6 – Process Synchronisation (Pgs 225 – 267)
Chapter 6: Process Synchronization. 6.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Module 6: Process Synchronization Background The.
Chapter 6: Process Synchronization. Module 6: Process Synchronization Background The Critical-Section Problem Peterson’s Solution Synchronization Hardware.
Background Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms to ensure the orderly execution.
Operating Systems CSE 411 CPU Management Dec Lecture Instructor: Bhuvan Urgaonkar.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 6: Process Synchronization.
Process Synchronization. Objectives To introduce the critical-section problem, whose solutions can be used to ensure the consistency of shared data To.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 6: Process Synchronization.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Chapter 5: Process Synchronization.
Chapter 6 Synchronization Dr. Yingwu Zhu. The Problem with Concurrent Execution Concurrent processes (& threads) often access shared data and resources.
6.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 6: Synchronization Background The Critical-Section Problem Peterson’s.
6.1 Silberschatz, Galvin and Gagne ©2005 Operating System Principles 6.5 Semaphore Less complicated than the hardware-based solutions Semaphore S – integer.
Semaphores Synchronization tool (provided by the OS) that does not require busy waiting. Logically, a semaphore S is an integer variable that, apart from.
Chapter 6: Process Synchronization
Semaphore Synchronization tool that provides more sophisticated ways (than Mutex locks) for process to synchronize their activities. Semaphore S – integer.
Process Synchronization
Chapter 5: Process Synchronization
Process Synchronization: Semaphores
Auburn University COMP 3500 Introduction to Operating Systems Synchronization: Part 4 Classical Synchronization Problems.
PARALLEL PROGRAM CHALLENGES
Background on the need for Synchronization
Process Synchronization
Chapter 5: Process Synchronization – Part II
Chapter 5: Process Synchronization
Chapter 5: Process Synchronization
Chapter 6: Process Synchronization
Chapter 5: Process Synchronization
Chapter 6: Process Synchronization
Chapter 5: Process Synchronization
Chapter 6: Synchronization Tools
Chapter 6: Synchronization Tools
Topic 6 (Textbook - Chapter 5) Process Synchronization
Semaphore Originally called P() and V() wait (S) { while S <= 0
Process Synchronization
Module 7a: Classic Synchronization
Critical section problem
Grades.
Concurrency: Mutual Exclusion and Process Synchronization
Chapter 6: Process Synchronization
Chapter 6: Synchronization Tools
Chapter 5: Process Synchronization
Chapter 6: Synchronization Tools
CSE 542: Operating Systems
Presentation transcript:

Lecture 2 Part 2 Process Synchronization

Background Processes can execute concurrently May be interrupted at any time, partially completing execution Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating processes

Critical Section Problem Consider system of n processes {p0, p1, … pn-1} Each process has critical section segment of code Process may be changing common variables, updating table, writing file, etc When one process in critical section, no other may be in its critical section Critical section problem is to design protocol to solve this Each process must ask permission to enter critical section in entry section, may follow critical section with exit section, then remainder section

Critical Section General structure of process Pi

Algorithm for Process Pi do { while (turn == j); critical section turn = j; remainder section } while (true);

Solution to Critical-Section Problem 1. Mutual Exclusion - If process Pi is executing in its critical section, then no other processes can be executing in their critical sections 2. Progress - If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then the selection of the processes that will enter the critical section next cannot be postponed indefinitely 3. Bounded Waiting - A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted

Critical-Section Handling in OS Two approaches depending on if kernel is preemptive or non- preemptive Preemptive – allows preemption of process when running in kernel mode Non-preemptive – runs until exits kernel mode, blocks, or voluntarily yields CPU

Critical-Section solutions 1. Peterson’s Solution : Good algorithmic description of solving the problem Two process solution 2. Synchronization Hardware : Many systems provide hardware support for implementing the critical section code. All solutions below based on idea of locking Protecting critical regions via locks Uniprocessors – could disable interrupts Modern machines provide special atomic hardware instructions Atomic = non-interruptible Both solutions old and complex

Solution to Critical-section Problem Using Locks do { acquire lock critical section release lock remainder section } while (TRUE);

3. Mutex Locks OS designers build software tools to solve critical section problem Simplest is mutex lock Protect a critical section by first acquire() a lock then release() the lock Boolean variable indicating if lock is available or not Calls to acquire() and release() must be atomic Usually implemented via hardware atomic instructions But this solution requires busy waiting This lock therefore called a spinlock

acquire() and release() acquire() { while (!available) ; /* busy wait */ available = false;; } release() { available = true; do { acquire lock critical section release lock remainder section } while (true);

4. Semaphore wait() and signal() wait(S) { signal(S) { Synchronization tool that provides more sophisticated ways (than Mutex locks) for process to synchronize their activities. Semaphore S – integer variable Can only be accessed via two indivisible (atomic) operations wait() and signal() Originally called P() and V() Definition of the wait() operation wait(S) { while (S <= 0) ; // busy wait S--; } Definition of the signal() operation signal(S) { S++;

Semaphore Usage Counting semaphore – integer value can range over an unrestricted domain Binary semaphore – integer value can range only between 0 and 1 Same as a mutex lock Can solve various synchronization problems Consider P1 and P2 that require S1 to happen before S2 Create a semaphore “synch” initialized to 0 P1: S1; signal(synch); // execute synch P2: wait(synch); // wait for synch S2; Can implement a counting semaphore S as a binary semaphore

https://www.youtube.com/watch?v=iCIM_jeQZE4

Deadlock and Starvation Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes Let S and Q be two semaphores initialized to 1 P0 P1 wait(S); wait(Q); wait(Q); wait(S); ... ... signal(S); signal(Q); signal(Q); signal(S); Starvation – indefinite blocking A process may never be removed from the semaphore queue in which it is suspended Priority Inversion – Scheduling problem when lower-priority process holds a lock needed by higher-priority process