Volume 25, Issue 10, Pages e4 (October 2017)

Slides:



Advertisements
Similar presentations
Volume 20, Issue 2, Pages (February 2012)
Advertisements

Networks of Dynamic Allostery Regulate Enzyme Function
Volume 26, Issue 1, Pages (April 2007)
Natalie K. Garcia, Miklos Guttman, Jamie L. Ebner, Kelly K. Lee 
Sudha Chakrapani, Luis G. Cuello, D. Marien Cortes, Eduardo Perozo 
Ligand-Specific Interactions Modulate Kinetic, Energetic, and Mechanical Properties of the Human β2 Adrenergic Receptor  Michael Zocher, Juan J. Fung,
Asymmetric Activation of the Hsp90 Dimer by Its Cochaperone Aha1
Volume 22, Issue 7, Pages (July 2014)
Volume 9, Issue 2, Pages (February 2002)
Solution Structure of the U11-48K CHHC Zinc-Finger Domain that Specifically Binds the 5′ Splice Site of U12-Type Introns  Henning Tidow, Antonina Andreeva,
Volume 24, Issue 10, Pages (October 2016)
Volume 24, Issue 12, Pages (December 2016)
Ligand-Specific Interactions Modulate Kinetic, Energetic, and Mechanical Properties of the Human β2 Adrenergic Receptor  Michael Zocher, Juan J. Fung,
The Nuclear Xenobiotic Receptor CAR
Volume 20, Issue 2, Pages (February 2012)
Multivalent Recruitment of Human Argonaute by GW182
Volume 21, Issue 2, Pages (February 2013)
Structure and RNA Interactions of the N-Terminal RRM Domains of PTB
Volume 24, Issue 4, Pages (April 2016)
Volume 13, Issue 2, Pages (February 2005)
Structural and Biochemical Mechanisms for the Specificity of Hormone Binding and Coactivator Assembly by Mineralocorticoid Receptor  Yong Li, Kelly Suino,
CD4-Induced Activation in a Soluble HIV-1 Env Trimer
Structure-Guided Design of Fluorescent S-Adenosylmethionine Analogs for a High- Throughput Screen to Target SAM-I Riboswitch RNAs  Scott F. Hickey, Ming C.
Volume 21, Issue 10, Pages (October 2013)
Volume 21, Issue 13, Pages (December 2017)
Volume 19, Issue 10, Pages (October 2011)
Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex
Volume 20, Issue 1, Pages (January 2012)
Yuan Yang, Chang Shu, Pingwei Li, Tatyana I. Igumenova 
Volume 24, Issue 7, Pages (July 2016)
Volume 69, Issue 5, Pages e5 (March 2018)
Volume 5, Issue 3, Pages (March 2000)
A Conformational Switch in the CRIB-PDZ Module of Par-6
Volume 21, Issue 11, Pages (November 2013)
Volume 23, Issue 5, Pages (May 2015)
Volume 5, Issue 1, Pages 1-2 (July 2003)
The Flip Side Chemistry & Biology
Volume 25, Issue 12, Pages e2 (December 2017)
Deciphering the “Fuzzy” Interaction of FG Nucleoporins and Transport Factors Using Small-Angle Neutron Scattering  Samuel Sparks, Deniz B. Temel, Michael.
Volume 20, Issue 1, Pages (January 2013)
The Structure of the Tiam1 PDZ Domain/ Phospho-Syndecan1 Complex Reveals a Ligand Conformation that Modulates Protein Dynamics  Xu Liu, Tyson R. Shepherd,
Jiao Yang, Melesse Nune, Yinong Zong, Lei Zhou, Qinglian Liu  Structure 
Volume 26, Issue 1, Pages (April 2007)
Volume 122, Issue 2, Pages (July 2005)
Volume 19, Issue 1, Pages (January 2011)
Volume 5, Issue 5, Pages e3 (November 2017)
Partial Agonists Activate PPARγ Using a Helix 12 Independent Mechanism
Volume 19, Issue 1, Pages (January 2011)
Volume 9, Issue 8, Pages (August 2001)
Volume 21, Issue 2, Pages (February 2013)
Volume 26, Issue 1, Pages e2 (January 2018)
Volume 22, Issue 11, Pages (November 2015)
Dynamics of Nuclear Receptor Helix-12 Switch of Transcription Activation by Modeling Time-Resolved Fluorescence Anisotropy Decays  Mariana R.B. Batista,
Volume 60, Issue 2, Pages (October 2015)
Volume 20, Issue 1, Pages (January 2012)
Volume 24, Issue 9, Pages (September 2016)
Volume 24, Issue 9, Pages (September 2016)
Volume 26, Issue 2, Pages e3 (February 2018)
Volume 17, Issue 4, Pages (February 2005)
Structural and Biochemical Mechanisms for the Specificity of Hormone Binding and Coactivator Assembly by Mineralocorticoid Receptor  Yong Li, Kelly Suino,
Volume 24, Issue 6, Pages (June 2016)
Volume 21, Issue 6, Pages (June 2013)
Partial Agonists Activate PPARγ Using a Helix 12 Independent Mechanism
Volume 23, Issue 4, Pages (April 2015)
Structure and Interactions of PAS Kinase N-Terminal PAS Domain
Volume 25, Issue 9, Pages e3 (September 2017)
A Plug Release Mechanism for Membrane Permeation by MLKL
Volume 14, Issue 12, Pages (December 2006)
Matthew T. Eddy, Tatiana Didenko, Raymond C. Stevens, Kurt Wüthrich 
Volume 24, Issue 10, Pages (October 2016)
Presentation transcript:

Volume 25, Issue 10, Pages 1506-1518.e4 (October 2017) Synergistic Regulation of Coregulator/Nuclear Receptor Interaction by Ligand and DNA  Ian Mitchelle S. de Vera, Jie Zheng, Scott Novick, Jinsai Shang, Travis S. Hughes, Richard Brust, Paola Munoz-Tello, William J. Gardner, David P. Marciano, Xiangming Kong, Patrick R. Griffin, Douglas J. Kojetin  Structure  Volume 25, Issue 10, Pages 1506-1518.e4 (October 2017) DOI: 10.1016/j.str.2017.07.019 Copyright © 2017 Elsevier Ltd Terms and Conditions

Structure 2017 25, 1506-1518.e4DOI: (10.1016/j.str.2017.07.019) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 1 Structural Mapping the PPARγ-RXRα LBD Heterodimer Interaction Surface on SRC-2 RID (A–D) 2D (A) 1H-detected HSQC, (B) 13C-detected CON, and (C) 13C-detected intraCAN NMR experiments of [13C,15N]-labeled SRC-2 RID. (D) Change in relative CON and intraCAN peak intensity upon addition of unlabeled PPARγ-RXRα LBD heterodimer. (E) Differential HDX-MS analysis of SRC-2 RID ± PPARγ-RXRα LBD heterodimer. See also Figure S1. Structure 2017 25, 1506-1518.e4DOI: (10.1016/j.str.2017.07.019) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 2 Ligand and LXXLL Motif Contributions to Receptor Interaction Specificity (A) FP assay of SRC-2 RID binding to PPARγ-RXRα LBD heterodimer ± ligands. Data plotted as the average and SEM of two experimental replicates and fit to a one-site-specific binding equation. (B–G) Kd values from FP analysis of SRC-2 RID and individual LXXLL peptides to PPARγ-RXRα LBD heterodimer or each receptor alone ± ligands; data representative of two independent measurements. (H) Thermodynamic parameters from ITC analysis of SRC-2 RID binding to PPARγ-RXRα LBD heterodimer ± ligands; data representative of two independent measurements. See also Figures S2 and S3. Structure 2017 25, 1506-1518.e4DOI: (10.1016/j.str.2017.07.019) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 3 Structural Mapping the SRC-2 RID Interaction Surface on PPARγ-RXRα LBD Heterodimer (A–D) Differential HDX-MS analysis of PPARγ-RXRα LBD ± SRC-2 RID ± receptor-specific ligands shown as the change in deuterium uptake mapped onto the crystal structure of the PPARγ-RXRα LBD heterodimer (PDB: 1FM9). (E–L) Deuterium uptake plots for helix 12 peptides in PPARγ (E–H) and RXRα (I–L). Deuterium uptake curves in the absence of ligand are displayed as gray circles. See also Figures S2, S4, and S5. Structure 2017 25, 1506-1518.e4DOI: (10.1016/j.str.2017.07.019) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 4 Cooperativity of DNA and SRC-2 RID on Binding to Full-Length PPARγ-RXRα (A–D) FP assay to determine FITC-labeled PPRE DNA binding affinity ± SRC-2 RID (A); fitted Kd values (B); FP assay to determine FITC-labeled SRC-2 RID binding affinity ± PPRE DNA sequences(C); and fitted Kd values (D). In (A) and (C), data plotted as the average and SEM of two experimental replicates and fit to a one-site-specific binding equation. In (B) and (D), data represent the mean and SEM of two independent measurements. (E) Thermodynamic parameters from ITC analysis of SRC-2 RID binding to full-length PPARγ-RXRα LBD ± SULT2A1 DNA; data representative of two independent measurements. See also Figure S6. Structure 2017 25, 1506-1518.e4DOI: (10.1016/j.str.2017.07.019) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 5 Structural Mapping of Ligand, SRC-2 RID, and DNA Binding to Full-Length PPARγ-RXRα (A–F) Differential HDX-MS analysis of full-length PPARγ-RXRα, plotted on (A–C) a “compact” crystallized (PDB: 3DZY) and (D–F) “elongated” solution conformation: (A and D) ± receptor-specific ligands (9cRA and Rosi); (B and E) bound to ligands ± SRC-2 RID; and (C and F) bound to ligand and SRC-2 RID ± SULT2A1 DNA. 9cRA and Rosi shown as peach and purple spheres, respectively, and DNA and SRC-2 NR box 2 coactivator peptides from the crystal structure are shown in black. Red arrows (C and F) denote a DNA-induced conformational change via (C) the RXRα DBD/PPARγ LBD interaction surface or (F) a long-range allosteric conformational change. (G and H) Deuterium uptake plots for peptides affected by DNA binding in the (G) RXRα DBD and (H) PPARγ LBD. Data represent the mean and SD of three experimental replicates. Structure 2017 25, 1506-1518.e4DOI: (10.1016/j.str.2017.07.019) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 6 Cooperativity of Ligand and DNA on SRC-2 RID Binding to PPARγ-RXRα (A) Summary of the TR-FRET analysis including EC50 values, Hill slope, and TR-FRET window. Data represent the mean and SEM of two independent measurements. Data in the absence or presence of DNA are boxed as groups, respectively, for comparison. (B–G) TR-FRET assays of SRC-2 RID binding to (B) PPARγ-RXRα LBD heterodimer or (C–G) full-length PPARγ-RXRα under the conditions indicated. Data plotted as the average and SEM of two experimental replicates and fit to a variable slope sigmoidal dose-response equation. Structure 2017 25, 1506-1518.e4DOI: (10.1016/j.str.2017.07.019) Copyright © 2017 Elsevier Ltd Terms and Conditions

Figure 7 Structural Cooperativity Model between Ligand, DNA, and Coregulator Binding to PPARγ-RXRα Schematic illustrations summarizing the data presented in this study related to the (A) compact crystalized conformation and (B) elongated solution conformation. SRC-2 RID NR box 2 motif binds with highest affinity (dark red arrows) and is more significantly influenced by the RXRα agonist 9cRA (dark blue arrows) than the PPARγ agonist Rosi. DNA binding influences the conformation of PPARγ-RXRα (black arrows), SRC-2 RID affinity, and ligand potency. Structure 2017 25, 1506-1518.e4DOI: (10.1016/j.str.2017.07.019) Copyright © 2017 Elsevier Ltd Terms and Conditions