GoldExperience 통신공학설계실험 Kim Hyun Tai

Slides:



Advertisements
Similar presentations
Ch 3 Analysis and Transmission of Signals
Advertisements

ECE 8443 – Pattern Recognition EE 3512 – Signals: Continuous and Discrete Objectives: Response to a Sinusoidal Input Frequency Analysis of an RC Circuit.
Welcome to MATLAB DigComm LAB
EE513 Audio Signals and Systems Digital Signal Processing (Synthesis) Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
Digital Communication
Noise on Analog Systems
DREAM PLAN IDEA IMPLEMENTATION Introduction to Image Processing Dr. Kourosh Kiani
Noise. Noise is like a weed. Just as a weed is a plant where you do not wish it to be, noise is a signal where you do not wish it to be. The noise signal.
Digital Communications I: Modulation and Coding Course Spring Jeffrey N. Denenberg Lecture 3b: Detection and Signal Spaces.
C H A P T E R 4 AMPLITUDE MODULATIONS AND DEMODULATIONS
Phasor Analysis of Bandpass Signals
Pulse Amplitude Modulation Section 6.6. DSB/SC-AM Modulation (Review)
EEE422 Signals and Systems Laboratory Filters (FIR) Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
Systems: Definition Filter
Designing Bandpass Filters We will design several filters for the following normalized frequencies and desired frequency response. First, specify the desired.
PULSE MODULATION.
Pulse Modulation 1. Introduction In Continuous Modulation C.M. a parameter in the sinusoidal signal is proportional to m(t) In Pulse Modulation P.M. a.
Lecture 1 Signals in the Time and Frequency Domains
Digital Communication I: Modulation and Coding Course
1 Let g(t) be periodic; period = T o. Fundamental frequency = f o = 1/ T o Hz or  o = 2  / T o rad/sec. Harmonics =n f o, n =2,3 4,... Trigonometric.
Chapter 2. Signals Husheng Li The University of Tennessee.
6.2 - The power Spectrum of a Digital PAM Signal A digtal PAM signal at the input to a communication channl scale factor (where 2d is the “Euclidean.
EE Audio Signals and Systems Digital Signal Processing (Synthesis) Kevin D. Donohue Electrical and Computer Engineering University of Kentucky.
Lecture 1B (01/07) Signal Modulation
Signals CY2G2/SE2A2 Information Theory and Signals Aims: To discuss further concepts in information theory and to introduce signal theory. Outcomes:
Contents Introduction ( P1-P4). Frequency modulation.(P5-P7) Frequency demodulation (P8-P14) FM using simulink implementation (P15 – P 17)
EE104: Lecture 5 Outline Review of Last Lecture Introduction to Fourier Transforms Fourier Transform from Fourier Series Fourier Transform Pair and Signal.
Systems (filters) Non-periodic signal has continuous spectrum Sampling in one domain implies periodicity in another domain time frequency Periodic sampled.
EECE 252 PROJECT SPRING 2014 Presented by: Peizhen Sun Nor Asma Mohd Sidik.
Performance of Digital Communications System
Chapter 6. Effect of Noise on Analog Communication Systems
Fundamentals of Digital Signal Processing. Fourier Transform of continuous time signals with t in sec and F in Hz (1/sec). Examples:
EE 3220: Digital Communication
Demodulation of DSB-SC AM Signals
ECE 4371, Fall, 2009 Zhu Han Department of Electrical and Computer Engineering Class 7 Sep. 15 th, 2009.
Baseband Receiver Receiver Design: Demodulation Matched Filter Correlator Receiver Detection Max. Likelihood Detector Probability of Error.
Gustavo Cancelo Analysis of the phase shift error between A and B signals in BPMs BPM project.
Recent Updates: New Picosecond Pulsed Fiber Laser (PSL) By: Courtney Clarke.
For more course tutorials visit ECET 310 Entire Course (Devry) For more course tutorials visit ECET 310 Week 1 Homework.
FOR MORE CLASSES VISIT  ECET 310 Week 1 Homework 1_1  ECET 310 Week 1 Homework 1_2  ECET 310 Week 2 Assignment Homework 2_1.
Analog Communication Systems Amplitude Modulation By Dr. Eng. Omar Abdel-Gaber M. Aly Assistant Professor Electrical Engineering Department.
Báo cáo đồ án Thông Tin Số (CT386) Nhóm 2: 1.Cao Kim Loan Lâm Quốc Sự Bộ môn Điện Tử Viễn Thông GVHD : TS.Lương Vinh Quốc Danh.
Hülya Yalçın ©1 Fourier Series. Hülya Yalçın ©2 3.
ECET 310 Entire Course For more classes visit ECET 310 Week 1 Homework 1_1 ECET 310 Week 1 Homework 1_2 ECET 310 Week 2 Assignment.
PERFORMANCE OF A WAVELET-BASED RECEIVER FOR BPSK AND QPSK SIGNALS IN ADDITIVE WHITE GAUSSIAN NOISE CHANNELS Dr. Robert Barsanti, Timothy Smith, Robert.
EEE422 Signals and Systems Laboratory
Speech Signal Processing
Periodic Signals Prof. Brian L. Evans
Dynamic Specifications
Lecture 1.30 Structure of the optimal receiver deterministic signals.
Sampling and Reconstruction
Figure 4–1 Communication system.
EE Audio Signals and Systems
ECET 310 Education for Service/tutorialrank.com
Net 222: Communications and networks fundamentals (Practical Part)
Honors Physics 1 Class 20 Fall 2013
Fourier Transform Analysis of Signals and Systems
MMSE Optimal Design: The Least Squares method
Advanced Digital Signal Processing
Chapter 3: BASEBAND PULSE AND DIGITAL SIGNALING
Interpolation and Pulse Shaping
EEE 244-6: Fourier Transform (FFT) and Signal Processing
Rectangular Sampling.
LECTURE 18: FOURIER ANALYSIS OF CT SYSTEMS
Chapter 3: BASEBAND PULSE AND DIGITAL SIGNALING
Lab 2 Sampling and Quantization
Electrical Communication Systems ECE Spring 2019
8. Communication Systems
Electrical Communications Systems ECE Spring 2007
Electrical Communications Systems ECE
Presentation transcript:

GoldExperience 통신공학설계실험 2003440033 Kim Hyun Tai 2003440025 Kim Jung Woo 2003440004 Kim Dae Hyun

triangle함수(1) function x=triangle(tau, T1, T2, fs, df) % %************************************************* % Generation of triangular pulse % tau : pulse width [sec] % fs : sampling frequency % fs must be greater than or equal to 2/T % [T1, T2] : observation time interval [sec] % df : frequency resolution [Hz] % example % x=rect(2, -5, 5, 10, 0.01) %************************************************** 2

triangle함수(2) %clear %tau=2; %T1=-5; T2=5; %df=0.01; %frequency resolution %fs=10; %sampling frequency ts=1/fs; %sampling period t=[T1:ts:T2]; %observation time interval 3

triangle함수(3) % Signal genaration of triangular pulse x=zeros(size(t)); midpoint=floor((T2-T1)/2/ts)+1; L1=midpoint-fix(tau/2/ts); L2=midpoint+fix(tau/2/ts)-1; x(L1:midpoint)=(2/tau)*t(L1:midpoint)+1; %2/tau is the slope x(midpoint+1:L2)=-(2/tau)*t(midpoint+1:L2)+1; %[X,x1,df1]=fftseq(x,ts,df); %X1=X/fs; %scaling %f=[0:df1:df1*(length(x1)-1)]-fs/2; %frequency vector (range to plot) %plot(t,x); axis([T1, T2 -2 4]) 4

DSB_SC (1) % DSB_SC.m % Matlab program example for DSBSC-AM modulation % The message signal is triangular pulse with pulse width tau=0.1 % clear echo on df=0.3; % desired frequency resolution [Hz] ts=1/1000; % sampling interval [sec] fs=1/ts; % sampling frequency fc=250; % carrier frequency T1=-0.1; T2=0.1; % observation time interval (from T1 to T2 sec) t=[T1:ts:T2]; % observation time vector N = length(t); snr=20; % SNR in dB (logarithmic) snr_lin=10^(snr/10); % linear SNR 5

DSB_SC (2) % message signal tau=0.1; % Pulse width [sec] x=triangle(tau, T1, T2, fs, df); xc=cos(2*pi*fc.*t); % carrier signal xm=x.*xc; % mixing (xm is modulated signal) [X,x,df1]=fft_mod(x,ts,df); % Fourier transform of message signal X=X/fs; % scaling f=[0:df1:df1*(length(x)-1)]-fs/2; %frequency vector (range to plot) [Xm,xm,df1]=fft_mod(xm,ts,df); % Fourier transform of modulated signal Xm=Xm/fs; % scaling [XC,xc,df1]=fft_mod(xc,ts,df); % Fourier transform of carrier signal_power=norm(xm(1:N))^2/N; % power in modulated signal noise_power=signal_power/snr_lin; % compute noise power noise_std=sqrt(noise_power); % compute noise standard deviation noise=noise_std*randn(1,length(xm)); % generate noise 6

DSB_SC (3) r=xm+noise; % add noise to the modulated signal [R,r,df1]=fft_mod(r,ts,df); % spectrum of the signal+noise R=R/fs; % scaling %pause % Press a key to show the modulated signal power signal_power pause % Press any key to see the message signal waveform clf % ---------------------------------------------------------------- % Time domain waveforms of message signal and modulated signal subplot(2,1,1) plot(t,xc(1:length(t))) xlabel('Time') title('Carrier waveform') 7

DSB_SC (4) subplot(2,1,1) plot(t,x(1:length(t))) xlabel('Time') title('Message signal') pause % Press any key to see the modulated signal waveform subplot(2,1,2) plot(t,xm(1:length(t))) title('Modulated signal') pause % Press any key to see the spectra % ---------------------------------------------------------------- % Frequency domain plots of signal spectral plot(f,abs(fftshift(X))) xlabel('Frequency‘) 8

DSB_SC (5) title('Spectrum of the message signal') subplot(2,1,2) plot(f,abs(fftshift(Xm))) title('Spectrum of the modulated signal') xlabel('Frequency') pause % Press a key to see a noise sample % ---------------------------------------------------------------- % Waveform and spectrum of signal plus noise clf subplot(2,1,1) plot(t,noise(1:length(t))) title('noise sample') xlabel('Time') pause % Press a key to see the modulated signal and noise 9

DSB_SC (6) plot(t,r(1:length(t))) title('Signal and noise') xlabel('Time') pause % Press a key to see spectra of modulated signal and noise subplot(2,1,1) plot(f,abs(fftshift(Xm))) title('Signal spectrum') xlabel('Frequency') subplot(2,1,2) plot(f,abs(fftshift(R))) title('Signal and noise spectrum') 10

PLOT 결과(1) 그림1 그림2 11

PLOT 결과(2) 그림1 그림2 12

PLOT 결과(3) 그림1 그림2 13

PLOT 결과(4) 그림1 그림2 14

PLOT 결과(5) 15

DSBSC_DEM (1) % DSBSC_DEM.m % Matlab program example for DSBSC-AM demodulation % The message signal is triangular pulse with pulse width tau=0.1 clear echo on df=0.3; % desired frequency resolution [Hz] ts=1/1500; % sampling interval [sec] fs=1/ts; % sampling frequency fc=250; % carrier frequency T1=-0.1; T2=0.1; % observation time interval (from T1 to T2 sec) t=[T1:ts:T2]; % observation time vector % ----------------------------------------------- % modulation : DSB-SC tau=0.1; % Pulse width [sec] x=triangle(tau, T1, T2, fs, df); % message signal 16

DSBSC_DEM (2) %x=rect(tau, T1, T2, fs, df); % message signal xc=cos(2*pi*fc.*t); % carrier signal xm=x.*xc; % mixing (xm is modulated signal) [X,x,df1]=fft_mod(x,ts,df); % Fourier transform of message signal X=X/fs; % scaling [Xm,xm,df1]=fft_mod(xm,ts,df); % Fourier transform of modulated signal Xm=Xm/fs; % scaling [XC,xc,df1]=fft_mod(xc,ts,df); % Fourier transform of carrier clf f=[0:df1:df1*(length(xm)-1)]-fs/2; %frequency vector (range to plot) subplot(2,1,1) plot(t,x(1:length(t))) %xlabel('Time') title('Message signal') subplot(2,1,2) 17

DSBSC_DEM (3) plot(t,xm(1:length(t))) xlabel('Time') title('Modulated signal') pause % Press any key to see the spectra subplot(2,1,1) plot(f,abs(fftshift(X))) %xlabel('Frequency') title('Spectrum of the message signal') subplot(2,1,2) plot(f,abs(fftshift(Xm))) title('Spectrum of the modulated signal') xlabel('Frequency') % ---------------------------------------------- % AWGN noise channel %signal_power=norm(xm(1:N))^2/N; % power in modulated signal %noise_power=signal_power/snr_lin; % compute noise power 18

DSBSC_DEM (4) %noise_std=sqrt(noise_power); % compute noise standard deviation %noise=noise_std*randn(1,length(xm)); % generate noise %r=xm+noise; % add noise to the modulated signal r=xm; % received signal (r=rx for distortionless channel) [R,r,df1]=fft_mod(r,ts,df); % spectrum of the received signal R=R/fs; % scaling % ----------------------------------------------- % demodulation : coherent detection % We use ideal lowpass filter in this example. y=r.*xc; % mixing [Y,y,df1]=fft_mod(y,ts,df); % Fourier transform of mixer output Y=Y/fs; % scaling f_cutoff=150; % cutoff frequency of the filter n_cutoff=floor(f_cutoff/df1); % design the filter 19

DSBSC_DEM (5) H=zeros(size(f)); H(1:n_cutoff)=2*ones(1,n_cutoff); % freq. response of the lowpass filter H(length(f)-n_cutoff+1:length(f))=2*ones(1,n_cutoff); % note that the filter is periodic Z=H.*Y; % spectrum of the filter output z=real(ifft(Z))*fs; % filter output waveform pause % Press a key to see the effect of mixing clf subplot(3,1,1) plot(f,fftshift(abs(X))) title('Spectrum of the the Message Signal') %xlabel('Frequency') subplot(3,1,2) plot(f,fftshift(abs(R))) title('Spectrum of the Received Signal') 20

DSBSC_DEM (6) %xlabel('Frequency') subplot(3,1,3) plot(f,fftshift(abs(Y))) title('Spectrum of the Mixer Output') xlabel('Frequency') pause % Press a key to see the effect of filtering on the mixer output clf subplot(3,1,1) subplot(3,1,2) plot(f,fftshift(abs(H))) title('Lowpass Filter Characteristics') 21

DSBSC_DEM (7) plot(f,fftshift(abs(Z))) title('Spectrum of the Demodulator output') xlabel('Frequency') pause % Press a key to compare the spectra of the message an the received signal clf subplot(2,1,1) plot(f,fftshift(abs(X))) title('Spectrum of the Message Signal') %xlabel('Frequency') subplot(2,1,2) title('Spectrum of the Demodulator Output') pause % Press a key to see the message and the demodulator output signals 22

DSBSC_DEM (8) plot(t,x(1:length(t))) title('The Message Signal') %xlabel('Time') subplot(2,1,2) plot(t,z(1:length(t))) title('The Demodulator Output') xlabel('Time') 23

PLOT 결과(1) 그림1 그림2 24

PLOT 결과(2) 그림1 그림2 25

PLOT 결과(3) 26

PLOT 결과(4) 27

PLOT 결과(5) 28

PLOT 결과(6) 29

COMPUTER EXERCISES(2.1) % ce2_1: Computes generalized Fourier series coefficients for exponentially % decaying signal, exp(-t)u(t), or sinewave, sin(2*pi*t) % tau = input(¡¯Enter approximating pulse width: ¡¯); type_wave = input(¡¯Enter waveform type: 1 = decaying exponential; 2 = sinewave ¡¯); if type_wave == 1 t_max = input(¡¯Enter duration of exponential: ¡¯); elseif type_wave == 2 t_max = 1; end clf a = []; t = 0:.01:t_max; cn = tau; n_max = floor(t_max/tau) for n = 1:n_max 30

COMPUTER EXERCISES(2.1) LL = (n-1)*tau; UL = n*tau; if type_wave == 1 a(n) = (1/cn)*quad(@integrand_exp, LL, UL); elseif type_wave == 2 a(n) = (1/cn)*quad(@integrand_sine, LL, UL); end disp(¡¯ ¡¯) disp(¡¯c_n¡¯) disp(cn) disp(¡¯Expansion coefficients (approximating pulses not normalized):¡¯) disp(a) x_approx = zeros(size(t)); for n = 1:n_max 31

COMPUTER EXERCISES(2.1) x_approx = x_approx + a(n)*phi(t/tau,n-1); end if type_wave == 1 MSE = quad(@integrand_exp2, 0, t_max) - cn*a*a¡¯; elseif type_wave == 2 MSE = quad(@integrand_sine2, 0, t_max) - cn*a*a¡¯; disp(¡¯Mean-squared error:¡¯) disp(MSE) disp(¡¯ ¡¯) plot(t, x_approx), axis([0 t_max -inf inf]), xlabel(¡¯t¡¯), ylabel(¡¯x(t); x_a_p_p_r_o_x(t)¡¯) hold plot(t, exp(-t)) title([¡¯Approximation of exp(-t) over [0, ¡¯,num2str(t_max),¡¯] with contiguous rectangular pulses of width ¡¯,num2str(tau)]) 32

COMPUTER EXERCISES(2.1) elseif type_wave == 2 plot(t, x_approx), axis([0 t_max -inf inf]), xlabel(¡¯t¡¯), ylabel(¡¯x(t); x_a_p_p_r_o_x(t)¡¯) hold plot(t, sin(2*pi*t)) title([¡¯Approximation of sin(2*pi*t) over [0, ¡¯,num2str(t_max),¡¯] with contiguous rectangular pulses of width ¡¯,num2str(tau)]) end % Decaying exponential function for ce_1 % function z = integrand_exp(t) z = exp(-t); % Sine function for ce_1 function z = integrand_sine(t) z = sin(2*pi*t); % Decaying exponential squared function for ce_1 33

COMPUTER EXERCISES(2.1) % function z = integrand_exp2(t) z = exp(-2*t); % Sin^2 function for ce_1 function z = integrand_sine2(t) z = (sin(2*pi*t)).^2; A typical run follows: >> ce2_1 Enter approximating pulse width: 0.125 Enter waveform type: 1 = decaying exponential; 2 = sinewave: 2 n_max = 8 c_n 0.1250 Expansion coefficients (approximating pulses not normalized): 34

PLOT 결과 35

Goldexperience 감 사 합 니 다 36