Chemistry Chapter 4 Notes

Slides:



Advertisements
Similar presentations
PreAP Chemistry Chapter 4 Notes
Advertisements

Concept #4 “Electrons in the Atom” Honors Chemistry 1.
The Rutherford’s model of the atom did not explain how an atom can emit light or the chemical properties of an atom. Plum Pudding Model Rutherford’s Model.
Chapter 13 Electrons in Atoms
Chemistry Chapter 4 Arrangement of Electrons in Atoms
Chapter 4 Electron Configurations. Early thoughts Much understanding of electron behavior comes from studies of how light interacts with matter. Early.
Electronic Configurations of Atoms
Electrons in Atoms. Models of the Atom – A History John Dalton John Dalton atom was solid, indivisible mass atom was solid, indivisible mass J.J. Thomson.
The Modern Model of The Atom Chapter 4. Rutherford’s Model Discovered the nucleus Small dense and positive Electrons moved around in Electron cloud.
Electrons in Atoms Chapter 5 General Chemistry. Objectives Understand that matter has properties of both particles and waves. Describe the electromagnetic.
Chapter 5: Electrons In Atoms. Wave Nature of Light Electromagnetic Radiation – form of energy that exhibits wavelike behaviors as it travels through.
Jennie L. Borders. The Rutherford’s model of the atom did not explain how an atom can emit light or the chemical properties of an atom. Plum Pudding Model.
CHAPTER 4: Section 1 Arrangement of Electrons in Atoms
Chapter 4 Arrangement of Electrons in Atoms. 4-1 The Development of the New Atomic Model Rutherford’s atomic model – nucleus surrounded by fast- moving.
Chapter 4 - Electrons. Properties of Light What is light? A form of electromagnetic radiation: energy that exhibits wavelike behavior as it travels through.
Chapter 12 Electrons in Atoms. Greek Idea lDlDemocritus and Leucippus l Matter is made up of indivisible particles lDlDalton - one type of atom for each.
Ernest Rutherford’s Model l Discovered dense positive piece at the center of the atom- “nucleus” l Electrons would surround and move around it, like planets.
Chapter 5 Light Electrons in atoms. Models of the atom Rutherford’s model of the atom did not show or explain chemical properties of elements Needed some.
Chapter 5: Electrons in Atoms. Why focus on electrons? Scientists wanted to know why certain elements behaved similarly to some elements and differently.
Chapter 5 Electrons in Atoms The Bohr Model An electron is found only in specific circular paths, or orbits, around the nucleus. Each orbit has a fixed.
Light and Energy Electromagnetic Radiation is a form of energy that emits wave-like behavior as it travels through space. Examples: Visible Light Microwaves.
Electrons in Atoms Chapter Wave Nature of Light  Electromagnetic Radiation is a form of energy that exhibits wavelike behavior as it travels through.
Chapter 5 UEQ Electrons in Atoms What does an atom really look like?
Electron Structure. Bohr Model Used to explain the structure of the Hydrogen Atom –Hydrogen has only one electron This electron can only circle the nucleus.
The Development of A New Atomic Model
Unit 4 Energy and the Quantum Theory. I.Radiant Energy Light – electrons are understood by comparing to light 1. radiant energy 2. travels through space.
Electrons in Atoms Chapter 5. Section 5.1 Light and Quantized Energy.
CHAPTER 11 NOTES MODERN ATOMIC THEORY RUTHERFORD’S MODEL COULD NOT EXPLAIN THE CHEMICAL PROPERTIES OF ELEMENTS.
E LECTRONS IN A TOMS Chapter 5. L IGHT AND Q UANTIZED E NERGY Nuclear atom and unanswered questions Scientists found Rutherford’s nuclear atomic model.
Chapter 5.  Energy transmitted from one place to another by light in the form of waves  3 properties of a wave;  Wavelength  Frequency  Speed.
UNIT 10 LIGHT & ELECTRONS S.Fleck Unit Objectives Calculate the wavelength, frequency, or energy of light, given two of these values Explain.
Chapter 5: Electrons in Atoms Revising the Atomic Model Atomic Emission Spectra and the Quantum Mechanical Model.
Chapter 4 Electrons In Atoms.
Electrons in Atoms.
Chapter 5 – Electrons in Atoms
Starter S-30 How many electrons are found in Carbon Nitrogen Argon
Light, Electromagnetic Spectrum, & Atomic Spectra
Which scientist developed the quantum mechanical model of the atom?
Light, Quantitized Energy & Quantum Theory EQ: What does the Modern Atom look like? CVHS Chemistry Ch 5.
Arrangement of Electrons in Atoms
Chapter 5: Arrangement of Electrons in Atoms
5-1 Quantum Theory of the atom
Electrons In Atoms.
Chemistry EM spectrum notes
The whole range is called a continuous spectrum
Unit 3: Electron configuration and periodicity
Electrons in Atoms Section 2.2.
Chapter 5 Electrons in Atoms.
Chapter 5 Notes Electrons.
Electrons in Atoms.
Quantum Theory.
EM spectrum and electron conf NOTES
Chapter 13: Electrons in the Atom
Electronic Structure of Atoms
Electromagnetic spectrum
Which scientist developed the quantum mechanical model of the atom?
Chapter 5 Electrons in Atoms.
Chapter 6 – Electronic Structure of Atoms
Electrons in Atoms Chapter 5.
Quantum Theory and the Atom
Chapter 5 Introductory Assignment
“Electrons in the Atom”
Arrangement of Electrons in Atoms
Electrons in Atoms Chapter 5.
Electromagnetic spectrum
Chapter 5 Electrons in Atoms
Electrons in Atoms Rutherford’s model has some limitations
The Nature of Light (Honors)
Chapter 5: Electrons in Atoms
BIG topics... Light (electromagnetic radiation)
Presentation transcript:

Chemistry Chapter 4 Notes

Light is a small part of all the radiation (something that spreads from a source) called electromagnetic radiation. Electromagnetic radiation is energy in the form of waves (of electric and magnetic fields). Electromagnetic radiation includes radio waves, microwaves, infrared, visible light, X-rays, and Gamma rays. All these together are considered the Electromagnetic Spectrum.

As all the forms of electromagnetic radiation are waves, they all have similar properties. All electromagnetic radiation travels at the speed of light (c), 299,792,458 m/s (3 x 108) in a vacuum

•The crest is the top of the waves, the trough is the bottom of the waves, and the amplitude is a measurement from the rest or zero line to a crest or trough

in (per second – can be written as s-1) or Hz (Hertz) •The wavelength (λ – lambda) is the distance between successive crests/troughs and is measured in meters (often nm = 10-9 m) •The frequency (ν – nu) is the number of waves that pass a point in one second and is measured in (per second – can be written as s-1) or Hz (Hertz) 1 s

Wavelength is the distance between two crests/troughs λ (lamda) is the symbol of wavelength and m is the unit Frequency is the number of crests passing through a point per second

How many hertz is the first wave? How many hertz is the second wave?

How many hertz is the first wave? 1 wave per second = 1 Hz How many hertz is the second wave? 2 waves per second = 2 Hz

The speed of a wave is directly proportional to the wavelength and the frequency; c = λν is the formula Memorize this formula c ν λ

Example. A certain violet light has a wavelength of 413 nm Example. A certain violet light has a wavelength of 413 nm. What is the frequency of the light?

Example. A certain violet light has a wavelength of 413 nm Example. A certain violet light has a wavelength of 413 nm. What is the frequency of the light? ν = c λ

Example. A certain violet light has a wavelength of 413 nm Example. A certain violet light has a wavelength of 413 nm. What is the frequency of the light? ν = c λ ν = 3.00 × 108 m/s 413 × 10-9 m

Example. A certain violet light has a wavelength of 413 x 10-9 m Example. A certain violet light has a wavelength of 413 x 10-9 m. What is the frequency of the light? ν = c λ ν = 3.00 × 108 m/s 413 × 10-9 m ν = 7.26 × 1014 Hz

This lead Max Planck to theorize that light must carry energy in basic minimum amounts that he called quanta. Like a delivery person cannot correctly deliver half a box, the electrons in atoms cannot gain a fraction of a quantum of energy (it has to be in whole numbers).

h = Planck’s constant = 6.626 × 10-34 Js ν = frequency in Hz or 1/s He proposed that this energy was directly proportional to the frequency of the electromagnetic radiation and a constant, now called Planck’s constant. E = h ν E = energy in Joules (J) h = Planck’s constant = 6.626 × 10-34 Js ν = frequency in Hz or 1/s Memorize this formula You do not need to memorize this number E h ν

Example. What is the energy content of one quantum of the light with a wavelength of 413 x 10-9 m?

Example. What is the energy content of one quantum of the light with a wavelength of 413 x 10-9 m? Note: wavelength is not in the energy equation, but frequency is. So first, you must solve for the frequency. As seen in the earlier example, a wavelength of 413 x 10-9 m gives a ν = 7.26 × 1014 Hz.

Example. What is the energy content of one quantum of the light with a wavelength of 413 x10-9 m? ν = 7.26 × 1014 Hz E = h × ν E = 6.626 × 10-34 Js × 7.26 × 1014 1/s

Example. What is the energy content of one quantum of the light with a wavelength of 413 nm? ν = 7.26 × 1014 Hz E = h × ν E = 6.626 × 10-34 Js × 7.26 × 1014 1/s

Example. What is the energy content of one quantum of the light with a wavelength of 413 nm? ν = 7.26 × 1014 Hz E = h × ν E = 6.626 × 10-34 Js × 7.26 × 1014 1/s E = 4.81 × 10-19 J

This would indicated that the electrons in an atom were only absorbing specific amounts of energy from the electricity, causing the electrons to move from their ground state (normal position close to the nucleus) to an excited state (higher energy position further away from the nucleus). The electrons do not stay in the excited state for long and fall back to their ground state, losing the energy equal to what they gained.

Niels Bohr used this to develop a model of the atom where the electrons could only be in certain, specific energy level (n) orbits around the nucleus. Just as you cannot go up half a rung on a ladder, the electron could not go up a partial energy level. The electrons gained or lost enough energy to move a whole number amount of energy levels (n) away from or closer to the nucleus, or it did not move.

The quantum mechanical model starts with a Principal Quantum Number (n), which is the basic energy level of an electron, and often matches the period number. Possible values (currently) are 1-7.

The quantum mechanical model starts with a Principal Quantum Number (n), which is the basic energy level of an electron, and often matches the period number. Possible values (currently) are 1-7.

Inside the sublevels are orbitals, specific regions with a 90% probability of finding electrons. • s –orbitals are spherically shaped clouds around the nucleus • p -orbitals are bar-bell shaped clouds with the nucleus between the lobes • d and f are much more complex in shape

Each sublevel has room for a different amount of electrons, because an orbital can hold two electrons, then each sublevel has a different amount of orbitals

• s –sublevel can hold 2 electrons, so it has 1 orbital (shape) • p –sublevel can hold 6 electrons, so it has 3 orbitals (shapes) • d –sublevel can hold 10 electrons, so it has 5 orbitals (shapes) • f –sublevel can hold 14 electrons, so it has 7 orbitals (shapes)

The s sublevel is simply a sphere centered on the nucleus.                                                The p sublevel has three orbitals.  These are often referred to a dumbbell shape.                                                                                                                                                      The d sublevel has five orbitals:                                                                                                                                                                                                                                                              The f sublevel has seven orbitals:                                                                                                                                                                                                                                                                                                                         

To know the maximum amount of electrons that could be in any principal quantum level (and the number of elements that could be represented) use the formula 2n2 if n=1, then

To know the maximum amount of electrons that could be in any principal quantum level (and the number of elements that could be represented) use the formula 2n2 if n=1, then 2 electrons will fit if n=4,

To know the maximum amount of electrons that could be in any principal quantum level (and the number of elements that could be represented) use the formula 2n2 if n=1, then 2 electrons will fit if n=4, then 32 electrons will fit

Section 4.3 Electron Configurations In order to show on paper where electrons are likely to be located in an atom, orbital filling diagrams and electron configurations are drawn or written. When this is done, three rules must be followed:

1. Aufbau principle – electrons fill lower energy levels first, thus 1 before 2 and s before p, etc. a. orbitals within a sublevel are equal in energy (called degenerate) b. the principal energy levels often overlap, making them seem a little out of order c. boxes are used to represent orbitals

Another way of writing the aufbau principle diagram: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 7p

2. Pauli Exclusion principle – an orbital (box) can hold a maximum of two electrons (arrows) a. for two electrons to fit, they have to have opposite spins for one electron in the orbital for two electrons in the orbital (opposite spins)

3. Hund’s Rule – when electrons occupy degenerate orbitals, one electron is placed into each orbital with parallel spins before doubling up Ex. _____ _____ _____ NOT _____ _____ _____ 3p 3p

It has the general form nΔ° n = principal quantum number (1-7…) Δ = sublevel letter (s, p, d, or f) ° = number of e- in that orbital (1-14)

If writing out the entire electron configuration is too much, we can use the previous (in the periodic table) noble gas to take the place of part of the electron configuration: Polonium: 1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p4 Xenon: 1s22s22p63s23p64s23d104p65s24d105p6 Polonium: [Xe] 6s24f145d106p4

When the electron configuration is written for an element using the noble gas configuration the electrons written after the noble gas are the ones that appear on the outside of the atom, called valence electrons..