宇宙微波背景辐射与早期宇宙物理 郭宗宽(中科院理论物理研究所) 南开大学物理学院 2012年3月16日.

Slides:



Advertisements
Similar presentations
Observational constraints on primordial perturbations Antony Lewis CITA, Toronto
Advertisements

Observational constraints and cosmological parameters
Primordial perturbations and precision cosmology from the Cosmic Microwave Background Antony Lewis CITA, University of Toronto
Constraining Inflation Histories with the CMB & Large Scale Structure Dynamical & Resolution Trajectories for Inflation then & now Dick Bond.
Large Primordial Non- Gaussianity from early Universe Kazuya Koyama University of Portsmouth.
Cosmic Microwave Background & Primordial Gravitational Waves Jun-Qing Xia Key Laboratory of Particle Astrophysics, IHEP Planck Member CHEP, PKU, April.
Phenomenological Classification of Inflationary Potentials Katie Mack (Princeton University) with George Efstathiou (Cambridge University) Efstathiou &
Cosmological Structure Formation A Short Course
COSMOLOGY AS A TOOL FOR PARTICLE PHYSICS Roberto Trotta University of Oxford Astrophysics & Royal Astronomical Society.
CMB 与超标准宇宙学模型 郭宗宽 非线性和引力及时间本质研讨会,宁波大学
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
暴涨模型及观测检验 郭宗宽 中科院理论物理所 中国科技大学交叉学科理论研究中心 2011 年 6 月 30 日.
Dark Energy Perturbations 李明哲 南京大学物理学院 中国科技大学交叉学科理论研究中心 合肥.
History of the Universe - according to the standard big bang
The Curvature Perturbation from Vector Fields: the Vector Curvaton Case Mindaugas Karčiauskas Dimopoulos, Karčiauskas, Lyth, Rodriguez, JCAP 13 (2009)
CMB as a physics laboratory
IFIC, 6 February 2007 Julien Lesgourgues (LAPTH, Annecy)
New Inflation Amy Bender 05/03/2006. Inflation Basics Perturbations from quantum fluctuations of scalar field Fluctuations are: –Gaussian –Scale Invariant.
The Statistically Anisotropic Curvature Perturbation from Vector Fields Mindaugas Karčiauskas Dimopoulos, Karčiauskas, JHEP 07, 119 (2008) Dimopoulos,
Primordial density perturbations from the vector fields Mindaugas Karčiauskas in collaboration with Konstantinos Dimopoulos Jacques M. Wagstaff Mindaugas.
Trispectrum Estimator of Primordial Perturbation in Equilateral Type Non-Gaussian Models Keisuke Izumi (泉 圭介) Collaboration with Shuntaro Mizuno Kazuya.
Cosmic Inflation Tomislav Prokopec (ITP, UU) Utrecht Summer School, 28 Aug 2009 ˚ 1˚ WMAP 3y 2006.
Cosmology from CMB Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us about the.
暴涨宇宙学及其检验 郭宗宽(中科院理论物理研究所) 北京工业大学应用数理学院
Portsmouth. Models of inflation and primordial perturbations David Wands Institute of Cosmology and Gravitation University of Portsmouth Cosmo – 02Chicago,
Probing the Reheating with Astrophysical Observations Jérôme Martin Institut d’Astrophysique de Paris (IAP) 1 [In collaboration with K. Jedamzik & M. Lemoine,
Dark Energy The first Surprise in the era of precision cosmology?
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Gauss-Bonnet inflation 郭宗寛 (Zong-Kuan Guo) ITP, CAS 3rd Joint Retreat on Cosmology and LHC Physics November 2, 2012.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
CMB observations and results Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us.
Primordial black hole formation in an axion-like curvaton model Primordial black hole formation in an axion-like curvaton model 北嶋直弥 東京大学 / 宇宙線研究所 M. Kawasaki,
Non-Gaussianity, spectral index and tensor modes in mixed inflaton and curvaton models Teruaki Suyama (Institute for Cosmic Ray Research) In collaboration.
Constraining SUSY GUTs and Inflation with Cosmology Collaboration : M. Sakellariadou, R. Jeannerot. References : Jeannerot, J. R., Sakellariadou (2003)
Probing inflation with CMB anisotropies Zong-Kuan Guo (ITP, CAS) ICFPC 2012 (Weihai) August 12, 2012.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
宇宙微波背景辐射 郭宗宽 中国科学院研究生院 宇宙学基本假设和理论基础 宇宙学原理(无边,无中心) 爱因斯坦引力理论 宇宙物质(重子 + 光子 + 中微子 + 暗物质 + 暗能量) 观测实验的重要性 超新星,大尺度结构,宇宙微波背景辐射 宇宙射线, 21 厘米谱线,射电波,弱引力透镜,引力波,中微子.
Observational constraints on inflationary models Zong-Kuan Guo (ITP, CAS) CosPA2011 (Peking Uni) October 31, 2011.
1 Circular Polarization of Gravitational Waves in String Cosmology KITPC, 200 7 Jiro Soda Kyoto University work with Masaki Satoh & Sugumi Kanno.
Inflation coupled to the GB correction Zong-Kuan Guo Hangzhou workshop on gravitation and cosmology Sep 4, 2014.
Trajectories Bond, Contaldi, Frolov, Kofman, Souradeep, Vaudrevange 05.
宇宙微波背景辐射与 CPT 破坏 李明哲 南京大学物理学院 南大 - 紫台 粒子 - 核 - 宇宙学联合研究中心 南昌 中国高能物理学会.
Cheng Zhao Supervisor: Charling Tao
BICEP2 Results & Its Implication on inflation models and Cosmology Seokcheon Lee 48 th Workshop on Gravitation & NR May. 16 th
Cosmology : a short introduction Mathieu Langer Institut d’Astrophysique Spatiale Université Paris-Sud XI Orsay, France Egyptian School on High Energy.
Theory and observations
Sam Young University of Sussex arXiv: , SY, Christian Byrnes Texas Symposium, 16 th December 2015 CONDITIONS FOR THE FORMATION OF PRIMORDIAL BLACK.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
CMB physics Zong-Kuan Guo 《现代宇宙学》
Quintessential Inflation
Testing Primordial non-Gaussianities in CMB Anisotropies
12th Marcel Grossman Meeting,
The Cosmic Microwave Background and the WMAP satellite results
Inflation with a Gauss-Bonnet coupling
Physics Seminar Measurement of the Cosmic Microwave Background anisotropies and polarization with Planck Assoc. Prof. Guillaume Patanchon Astroparticle.
Notes on non-minimally derivative coupling
Quantum Spacetime and Cosmic Inflation
Shintaro Nakamura (Tokyo University of Science)
A Measurement of CMB Polarization with QUaD
Precision cosmology, status and perspectives
最新CMB观测结果对暴胀势的限制 胡建伟 中科院理论物理所 2014年 郑州 2014/07/07.
Inflation and the cosmological density perturbation
General, single field Inflation
暴涨模型及观测检验 郭宗宽 中科院理论物理所 中国科技大学交叉学科理论研究中心 2011年6月30日.
University of Portsmouth
Primordial Non-Gaussianity From Inflation
Measurements of Cosmological Parameters
CMB Anisotropy 이준호 류주영 박시헌.
“B-mode from space” workshop,
Presentation transcript:

宇宙微波背景辐射与早期宇宙物理 郭宗宽(中科院理论物理研究所) 南开大学物理学院 2012年3月16日

内容 宇宙微波背景辐射 暴涨模型 微波背景对暴涨模型的检验 展望

一. 宇宙微波背景辐射 (1) formation of the CMB Shortly after recombination, the photon mean free path became larger than the Hubble length, and photons decoupled from matter in the universe.

(2) story of the CMB observation George Gamow et al. estimated a temperature of 50K in 1946 the first discovery of CMB radiation in 1964-1965 the Nobel Prize in Physics 1978: A.A. Penzias and R.W. Wilson COBE (Cosmic Background Explorer), launched on 18 Nov. 1989, 4 years the Nobel Prize in Physics 2006: J.C. Mather and G.F. Smoot WMAP (Wilkinson Microwave Anisotropy Probe), launched on 30 June 2001, 9 years Planck, launched on 14 May 2009, 30 months (5 full sky) Other experiments: ground based experiments (QUaD, BICEP, SPT, ACT, ACTPol from 2013) balloon borne experiments (BOOMRANG, MAXIMA)

(3) CMB data analysis pipeline time-ordered data full-sky map spectrum parameter estimates The temperature anisotropies can be expanded in spherical harmonics, For Gaussian random fluctuations, the statistical properties of the temperature field are determined by the angular power spectrum For a full sky, noiseless experiments,

(4) physics of CMB anisotropies ► primary CMB anisotropies (at recombination) ► secondary CMB anisotropies (after recombination) reionization thermal SZ effect lensing effect integrated Sachs-Wolf effect

(5) COBE, WMAP and Planck

二. 暴涨模型 V (φ) φ slow-roll inflation criterions: slow-roll parameters e-folding number perturbations reheating inflation φ reheating

phenomenological models fine-tuning problems nature of inflaton field flatness problem, horizon problem, relic density problem large-field, small-field, hybrid, curvaton, k-inflation, G-inflation, trapped, warm, eternal, … to solve some problems phenomenological models fine-tuning problems nature of inflaton field to predict perturbations potential, field, kinetic, coupling Higgs field, D-brane, … Single-field, minimally-coupled, canonical kinetic, slow-roll inflation generates almost scale-invariant, adiabatic, Gaussian perturbations. large-scale structure, CMBR

(1) power-law inflaton coupled to the Gauss-Bonnet term It is known that there are correction terms of higher orders in the curvature to the lowest effective supergravity action coming from superstrings. The simplest correction is the Gauss-Bonnet (GB) term. Does the GB term drive acceleration of the Universe? If so, is it possible to generate nearly scale-invariant curvature perturbations? If not, when the GB term is sub-dominated, what is the influence on the power spectra? How strong WMAP data constrain the GB coupling? Our action: ZKG, D.J. Schwarz, PRD 80 (2009) 063523

power-law inflation: an exponential potential and an exponential GB coupling In the GB-dominated case, ultra-violet instabilities of either scalar or tensor perturbations show up on small scales. In the potential-dominated case, the Gauss-Bonnet correction with a positive (or negative) coupling may lead to a reduction (or enhancement) of the tensor-to-scalar ratio. constraints on the GB coupling

(2) slow-roll inflation with a Gauss-Bonnet correction Is it possible to generalize our previous work to the more general case of slow-roll inflation with an arbitrary potential and an arbitrary coupling? Hubble and GB flow parameters: to first order in the slow-roll approximation the scalar spectral index contains not only the Hubble flow parameters but also the GB flow parameters. the degeneracy of standard consistency relation is broken. ZKG, D.J. Schwarz, PRD 81 (2010) 123520

Consider a specific inflation model: Defining in the case, the spectral index and the tensor-to-scalar ratio can be written in terms of the function of N: n = 4 The Gauss-Bonnet term may revive the quartic potential ruled out by recent cosmological data.

三. 微波背景对暴涨模型的检验 primordial power spectrum of curvature perturbations: scale-invariant? slightly tilted power-law? running index? suppression at large scales? local features? a critical test of inflation! non-adiabaticity: matter isocurvature modes (axion-type, curvaton-type)? neutrino isocurvature modes? a powerful probe of the physics of inflation! non-Gaussianity: local form (multiple fields)? equilateral form (non-canonical kinetic)? orthogonal form (higher-derivative field)? a powerful test of inflation! primordial gravitational waves: the consistency relation? smoking-gun evidence for inflation!

 Relation between the inflation potential, the primordial power spectrum of curvature perturbations and the angular power spectrum of the CMB  a single CDM isocurvature mode  constraint on ns and r  constraints on non-Gaussianity (95% CL)

(1) CMB constraints on the energy scale of inflation Determining the energy scale of inflation is crucial to understand the nature of inflation in the early Universe. The inflationary potential can be expanded as to leading order in the slow-roll approximation ZKG, D.J. Schwarz, Y.Z. Zhang, PRD 83 (2011) 083522

We find upper limits on the potential energy, the first and second derivative of the potential, derived from the 7-year WMAP data with with Gaussian priors on the Hubble constant and the distance ratios from the BAO (at 95% CL):

Forecast constraints (68% and 95% CL) on the V0-V1 plane (left) and the V1-V2 plane (right) for the Planck experiment in the case of r = 0.1. Using the Monte Carlo simulation approach, we have presented forecasts for improved constrains from Planck. Our results indicate that the degeneracies between the potential parameters are broken because of the improved constraint on the tensor-to-scalar ratio from Planck.

(2) the shape of the primordial power spectrum comments: scale-invariant (As) power-law (As, ns) running spectral index (As, ns, as) It is logarithmically expanded Our method: advantages: It is easy to detect deviations from a scale-invariant or a power-law spectrum. Negative values of the spectrum can be avoided by using ln P(k) instead of P(k). The shape of the power spectrum reduces to the scale-invariant or power-law spectrum as a special case when N bin= 1, 2, respectively. ZKG, D.J. Schwarz, Y.Z. Zhang, JCAP 08 (2011) 031

WMAP7+H0+BAO WMAP7+H0+BAO WMAP7+ACT+H0+BAO WMAP7+ACT+H0+BAO The Harrison-Zel’dovich spectrum is disfavored at 2s and the power-law spectrum is a good fit to the data.

(3) uncorrelated estimates from Planck simulated data We use the localized principle component analysis to detect deviations from scale invariance of the primordial curvature perturbations. ZKG, Y.Z. Zhang, JCAP 11 (2011) 032

(4) primordial power spectrum versus extension parameters ZKG, Y.Z. Zhang, arXiv:1201.1538

四. 展望 theoretical prospects (new physics?) observational prospects the shape of the primordial power spectrum of scalar perturbations? entropy perturbations? non-Gaussianity (surprise?) the primordial gravitational wave (surprise?)

谢谢!