The Grand Unified Theory of Quantum Metrology

Slides:



Advertisements
Similar presentations
1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Advertisements

APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Quantum-limited measurements: One physicist’s crooked path from quantum optics to quantum information I.Introduction II.Squeezed states and optical interferometry.
From Gravitational Wave Detectors to Completely Positive Maps and Back R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta.
Experimental quantum estimation using NMR Diogo de Oliveira Soares Pinto Instituto de Física de São Carlos Universidade de São Paulo
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Q UANTUM M ETROLOGY IN R EALISTIC S CENARIOS Janek Kolodynski Faculty of Physics, University of Warsaw, Poland PART I – Q UANTUM M ETROLOGY WITH U NCORRELATED.
Next generation nonclassical light sources for gravitational wave detectors Stefan Ast, Christoph Baune, Jan Gniesmer, Axel Schönbeck, Christina Vollmer,
Displaced-photon counting for coherent optical communication Shuro Izumi.
Quantum enhanced metrology R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B. Smith 2, J. Lundeen 2, M. Kacprowicz.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Complexity and Disorder at Ultra-Low Temperatures 30th Annual Conference of LANL Center for Nonlinear Studies SantaFe, 2010 June 25 Quantum metrology:
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Reducing Decoherence in Quantum Sensors Charles W. Clark 1 and Marianna Safronova 2 1 Joint Quantum Institute, National Institute of Standards and Technology.
A quantum optical beam n Classically an optical beam can have well defined amplitude AND phase simultaneously. n Quantum mechanics however imposes an uncertainty.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of.
Dynamical decoupling in solids
Decoherence issues for atoms in cavities & near surfaces Peter Knight, Imperial College London work with P K Rekdal,Stefan Scheel, Almut Beige, Jiannis.
Quantum metrology: dynamics vs. entang lement I.Introduction II.Ramsey interferometry and cat states III.Quantum and classical resources IV.Quantum information.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Purdue University Spring 2014 Prof. Yong P. Chen Lecture 5 (2/3/2014) Slide Introduction to Quantum Optics &
Quantum Interferometric Sensors 22 APR 09, NIST, Gaithersburg Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical.
Towards a Universal Count of Resources Used in a General Measurement Saikat Ghosh Department of Physics IIT- Kanpur.
Coherence and Decoherence on fundamental sensitivity limits of quantum probes in metrology and computation R. Demkowicz-Dobrzański 1, K. Banaszek 1, J.
Jonathan P. Dowling Distinction Between Entanglement and Coherence in Many Photon States and Impact on Super- Resolution quantum.phys.lsu.edu Hearne Institute.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) Laboratoire Kastler Brossel A. Dantan, E. Giacobino, M. Pinard.
Quantum Entanglement and Distillation in Information Processing Shao-Ming Fei
Quantum computation speed-up limits from quantum metrological precision bounds R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1,
Using entanglement against noise in quantum metrology
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Jarzyna 1, K. Banaszek.
Quantum Optical Metrology, Imaging, and Computing
Jonathan P. Dowling QUANTUM SENSORS: WHAT’S NEW WITH N00N STATES?
Quantum metrology: dynamics vs. entanglement
Distillation and determination of unknown two-qubit entanglement: Construction of optimal witness operator Heung-Sun Sim Physics, KAIST ESF conference:
October 1, 2007 Quantum Optical Sensing: Single Mode, Multi-Mode, and Continuous Time Jeffrey H. Shapiro.
QND, LSC / Virgo Collaboration Meeting, 2007, HannoverH. Müller-Ebhardt Entanglement between test masses Helge Müller-Ebhardt, Henning Rehbein, Kentaro.
Sense and sensitivity:,,robust’’ quantum phase estimation R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B.
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański, M. Markiewicz Faculty of Physics, University.
Metrology and integrated optics Geoff Pryde Griffith University.
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Atomic Clocks Niles Bohr Institute PhD Student: Johannes Borregaard
Role of entanglement in extracting information on quantum processes
Tunable excitons in gated graphene systems
Matrix Product States in Quantum Metrology
Quantum-limited measurements:
Quantum Phase Transition of Light: A Renormalization Group Study
Using Quantum Means to Understand and Estimate Relativistic Effects
Fundamental bounds on stability of atomic clocks
M. Stobińska1, F. Töppel2, P. Sekatski3,
the illusion of the Heisenberg scaling
Detector of “Schrödinger’s Cat” States of Light
Quantum-limited measurements:
Unconstrained distillation capacities of
Quantum Engineering & Control
Classical Mechanics PHYS 2006 Tim Freegarde.
Ultraprecise Clock Synchromnization Via Distant Entanglement
The Grand Unified Theory of Quantum Metrology
Quantum State and Process Measurement and Characterization
Geometric Phase in composite systems
Quantum optics as a tool for visualizing fundamental phenomena
Quantum computation using two component Bose-Einstein condensates
Advanced Optical Sensing
Analytical calculation Ideal pulse approximation
INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION
Jaynes-Cummings Hamiltonian
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

The Grand Unified Theory of Quantum Metrology Cold atom magnetometers GUT NV sensors Optical interferometers using non-classical light Atomic inertial sensors Atomic clocks R. Demkowicz-Dobrzański1, J. Czajkowski1, P. Sekatski2 1Faculty of Physics, University of Warsaw, Poland 2Institut fur Theoretische Physik, Universitat Innsbruck, Austria

Optical interferometry NV center magnetometers Quantum Metrology under relevant physical constraints make the most of quantum coherence (and entanglement) to boost measurement precision Optical interferometry Atomic clocks NV center magnetometers Coherence „classical” light uncorrelated/single atoms electron spin only Entanglement squeezed light entangled atoms electron spin entangled with nuclear spins Decoherence photon loss LO fluctuations, atom dephasing, loss spin dephasing 1.

Important case studies Optical phase estimation in presence of losses C. Caves, Phys. Rev D 23, 1693 (1981) Frequency estimation in presence of atomic dephasing S. Huelga et al. Phys.Rev.Lett. 79, 3865 (1997) without decoherence with decoherence N – number of atoms, T – total interrogation time N – number of photons used, squeezed light, NOON states H. Lee, P. Kok, J. P. Dowling J. Mod. Opt. 49, 2325 (2002). spin-squeezed states or GHZ state weakly squeezed light weakly spin-squeezed states

Most general adaptive interferometry scheme utilizing N photons Optimal scheme:

Quantum Fisher Information Quantum Cramer-Rao inequality: For pure states: Mixed state quantum Fisher via minimization over purifications:

Most general adaptive interferometry scheme utilizing N photons Optimal scheme: V. Giovannetti, S. Lloyd, and L. Maccone, Phys. Rev. Lett. 96, 010401 (2006).

Precision bounds via minimization over equivalent Kraus representations single channel optimization! A. Fujiwara, H. Imai, J. Phys. A 41, 255304 (2008) B. M. Escher, R. L. de Matos Filho, L. Davidovich Nature Phys. 7, 406–411 (2011) RDD, J. Kolodynski, M. Guta, Nat. Commun. 3, 1063 (2012) RDD, L. Maccone Phys. Rev. Lett. 113, 250801 (2014) [Adaptive schemes included]

Adaptive frequency estimation Maximize Quantum Fisher Information under fixed total interrogation time T ?

General frequency estimation problem under Markovian noise Maximize Quantum Fisher Information under fixed total interrogation time T ?

Frequency estimation bounds directly from the quantum Master equation Without loss of generality we may always consider limit t->0….. Expand  and  in t…

Frequency estimation bounds directly from the quantum Master equation Quantitative bound: Can be solved by semi-definite programming: RDD, J. Czajkowski, P. Sekatski,, Phys. Rev. X 7, 041009 (2017)

Heisenberg scaling is typically lost Single photon modeled as a three level system: Fundamental bound can be asymptotically reached with simple schemes involving weakly squeezed states!

GEO600 interferometer at the fundamental quantum bound The most general quantum strategies could additionally improve the precision by at most 8% coherent light +10dB squeezed fundamental bound RDD, K. Banaszek, R. Schnabel, Phys. Rev. A, 041802(R) (2013)

Recovering the Heisenberg scaling via Quantum Error Correction - Example Perpendicular dephasing: Simple quantum error correction scheme leads to G. Arad et al Phys. Rev. Lett 112, 150801 (2014) E. Kessler et.al Phys. Rev. Lett. 112, 150802 (2014) W. Dür, et al., Phys. Rev. Lett. 112, 080801 (2014) P. Sekatski, M. Skotiniotis, J. Kolodynski, W. Dur, Quantum 1, 27 (2017)

Recovering the Heisenberg scaling via Quantum Error Correction - General can be improved with semi-definite programming algorithm S. Zhou, M. Zhang, J. Preskill, and L. Jiang, Nat. Commun. 9, 78 (2018)

Take home message RDD, J. Czajkowski, P. Sekatski,, Phys. Rev. X 7, 041009 (2017) S. Zhou, M. Zhang, J. Preskill, and L. Jiang, Nat. Commun. 9, 78 (2018)

Application to quantum merology with many-body interractions k-body Hamiltonian l-body decoherence

Application to quantum merology with many-body interractions

Application to quantum merology with many-body interractions RDD, J. Czajkowski, P. Sekatski, arXiv:1704.06280

Example: nonlinear dephasing models