Experimental Model for Cartilage Tissue Engineering to Regenerate the Zonal Organization of Articular Cartilage  T.-K Kim, M.D., Ph.D., B Sharma, B.A.Sc.,

Slides:



Advertisements
Similar presentations
Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Advertisements

Early genetic restoration of lubricin expression in transgenic mice mitigates chondrocyte peroxynitrite release and caspase-3 activation  K.M. Larson,
Effects of pleiotrophin, a heparin-binding growth factor, on human primary and immortalized chondrocytes  Dr. T. Pufe, Ph.D., G. Groth, M.B. Goldring,
BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium- derived progenitor cells cultured in three-dimensional alginate hydrogel 
Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal.
Xibin Wang, Ph. D. , Paul A. Manner, M. D. , Alan Horner, Ph. D
Alleviation of osteoarthritis by calycosin-7-O-β-d-glucopyranoside (CG) isolated from Astragali radix (AR) in rabbit osteoarthritis (OA) model  S.I. Choi,
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Endoglin differentially regulates TGF-β-induced Smad2/3 and Smad1/5 signalling and its expression correlates with extracellular matrix production and.
Deiodinase 2 upregulation demonstrated in osteoarthritis patients cartilage causes cartilage destruction in tissue-specific transgenic rats  H. Nagase,
Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading  E.J. Vanderploeg, Ph.D., C.G.
Characterization of cells from pannus-like tissue over articular cartilage of advanced osteoarthritis  G.-H Yuan, M.D., Ph.D., M Tanaka, V.M.D., K Masuko-Hongo,
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell- delivery vehicle  C.D. Hoemann, Ph.D., J. Sun, M.D., A. Légaré, M.Sc.,
Localization of bone morphogenetic protein-2 in human osteoarthritic cartilage and osteophyte  T. Nakase, M.D., Ph.D., T. Miyaji, M.D., T. Tomita, M.D.,
Mechanical loading regimes affect the anabolic and catabolic activities by chondrocytes encapsulated in PEG hydrogels  G.D. Nicodemus, S.J. Bryant  Osteoarthritis.
Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage  Peggy M.
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) is closely associated with the chondrocyte nucleus in human articular cartilage  E.B. Hunziker,
Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP  J. Jiang,
Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro  L. Rackwitz, F. Djouad, S.
Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms.
S. Varghese, Ph. D. , P. Theprungsirikul, B. S. , S. Sahani, B. S. , N
Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix  A. Gigout, H. Guehring, D. Froemel, A. Meurer, C. Ladel,
The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels  T. Hao, N. Wen, J.-K.
J.G Costouros, M.D., A.C Dang, H.T Kim, M.D., Ph.D. 
Evaluation of autologous chondrocyte transplantation via a collagen membrane in equine articular defects – results at 12 and 18 months  D.D. Frisbie,
P. C. Kreuz, C. Gentili, B. Samans, D. Martinelli, J. P. Krüger, W
A. H. Huang, B. S. , M. Yeger-McKeever, M. D. , A. Stein, R. L
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that.
R.S. Cosden-Decker, M.M. Bickett, C. Lattermann, J.N. MacLeod 
Expression of the semicarbazide-sensitive amine oxidase in articular cartilage: its role in terminal differentiation of chondrocytes in rat and human 
C. Candrian, S. Miot, F. Wolf, E. Bonacina, S. Dickinson, D. Wirz, M
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
Expression of proteinase-activated receptors (PAR)-2 in articular chondrocytes is modulated by IL-1β, TNF-α and TGF-β  Y. Xiang, M.D., K. Masuko-Hongo,
Osteogenic protein-1 promotes the formation of tissue-engineered cartilage using the alginate-recovered-chondrocyte method  Dr. K. Masuda, M.D., B.E.
L. Bian, S. L. Angione, K. W. Ng, E. G. Lima, D. Y. Williams, D. Q
Low calcium levels in serum-free media maintain chondrocyte phenotype in monolayer culture and reduce chondrocyte aggregation in suspension culture  A.
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins  M. Pei, M.D., Ph.D., J. Luo, M.D.,
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment  B. Appel, J. Baumer, D.
Topographic and zonal distribution of tenascin in human articular cartilage from femoral heads: normal versus mild and severe osteoarthritis  K Veje,
Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage  Colette Salvat, B.Sc., Audrey Pigenet, Lydie Humbert,
Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes  A. Marsano, M.Sc., S.J. Millward-Sadler,
Autologous chondrocyte implantation (ACI) for aged patients: development of the proper cell expansion conditions for possible therapeutic applications 
Changes of human menisci in osteoarthritic knee joints
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
Intra-articular injection of interleukin-4 decreases nitric oxide production by chondrocytes and ameliorates subsequent destruction of cartilage in instability-induced.
Cartilaginous repair of full-thickness articular cartilage defects is induced by the intermittent activation of PTH/PTHrP signaling  S. Kudo, H. Mizuta,
Glucosamine sulfate modulates the levels of aggrecan and matrix metalloproteinase-3 synthesized by cultured human osteoarthritis articular chondrocytes 
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
Mevastatin reduces cartilage degradation in rabbit experimental osteoarthritis through inhibition of synovial inflammation  Y. Akasaki, M.D., S. Matsuda,
Heinz-J. Hausser, Ph.D., Ralf Decking, M.D., Rolf E. Brenner, M.D. 
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
S. P Grogan, Ph. D. , F Rieser, B. Sc
Tissue engineering of stratified articular cartilage from chondrocyte subpopulations  T.J. Klein, M.S., B.L. Schumacher, B.S., T.A. Schmidt, M.S., K.W.
Identification of molecular markers for articular cartilage
Tissue engineering with meniscus cells derived from surgical debris
Cellular origin of neocartilage formed at wound edges of articular cartilage in a tissue culture experiment  P.K. Bos, M.D., Ph.D., N. Kops, B.Sc., J.A.N.
Identification of opticin, a member of the small leucine-rich repeat proteoglycan family, in human articular tissues: a novel target for MMP-13 in osteoarthritis 
K.L. Caldwell, J. Wang  Osteoarthritis and Cartilage 
Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term.
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint  S. Giannini, M.D., R. Buda,
H. Stenhamre, M. Sc. , K. Slynarski, M. D. , Ph. D. , C. Petrén, T
Demineralized bone alters expression of Wnt network components during chondroinduction of post-natal fibroblasts  Karen E. Yates, Ph.D  Osteoarthritis.
Y. Akasaki, A. Hasegawa, M. Saito, H. Asahara, Y. Iwamoto, M.K. Lotz 
K. -C. Wang, E. Kwan, K. Aris, T. T. Egelhoff, A. I. Caplan, J. F
Effect of expansion medium on ex vivo gene transfer and chondrogenesis in type II collagen–glycosaminoglycan scaffolds in vitro  R.M. Capito, Ph.D., M.
Presentation transcript:

Experimental Model for Cartilage Tissue Engineering to Regenerate the Zonal Organization of Articular Cartilage  T.-K Kim, M.D., Ph.D., B Sharma, B.A.Sc., C.G Williams, M.D., M.A Ruffner, A Malik, E.G McFarland, M.D., J.H Elisseeff, Ph.D.  Osteoarthritis and Cartilage  Volume 11, Issue 9, Pages 653-664 (September 2003) DOI: 10.1016/S1063-4584(03)00120-1

Fig. 1 Photographs demonstrating the surgical technique to harvest cartilage slices from the different zones. Cartilage was taken from the patellofemoral groove and distal femoral condyles (A). The top 10%, central 10%, and bottom 10% of the excised tissue were harvested to isolate the upper, middle, and lower cartilage (B). Abbreviations: U—upper; M—middle; and L—lower. Osteoarthritis and Cartilage 2003 11, 653-664DOI: (10.1016/S1063-4584(03)00120-1)

Fig. 2 Schematic drawings showing the technique to make multi-layered constructs: (A) encapsulating processes and (B) the produced constructs. Osteoarthritis and Cartilage 2003 11, 653-664DOI: (10.1016/S1063-4584(03)00120-1)

Fig. 3 Histology of cartilage slices confirmed that cartilage slices had been obtained from the three layers: upper (A, D), middle (B, E), and lower (C, F) zones (safranin-O staining (A–C), Masson's trichrome staining (D–F), 200×, meter bar=100μm). Osteoarthritis and Cartilage 2003 11, 653-664DOI: (10.1016/S1063-4584(03)00120-1)

Fig. 4 Results of the biochemical assays of cartilage slices from different layers: water (A); DNA (B); GAG (C); and collagen (D) (∗P<0.05 and ∗∗P<0.01). Osteoarthritis and Cartilage 2003 11, 653-664DOI: (10.1016/S1063-4584(03)00120-1)

Fig. 5 Growth curves of the cells from different layers and the summary of the growth kinetic study. (A) Growth curves of primarily isolated chondrocytes. (B) Growth curves of passaged cells (passage, PO). (C) Initial population doublings defined as the number of population doubling for the first 3 days after plating. (D) Population doubling time (∗P<0.05 and ∗∗P<0.01). Osteoarthritis and Cartilage 2003 11, 653-664DOI: (10.1016/S1063-4584(03)00120-1)

Fig. 6 RT-PCR of cartilage specific markers. β-Actin and GAPDH were displayed as the internal control. Abbreviations: U—upper; M—middle; and L—lower. Osteoarthritis and Cartilage 2003 11, 653-664DOI: (10.1016/S1063-4584(03)00120-1)

Fig. 7 Cell viability assay using the Live/Dead Viability/Cytotoxicity kit (Molecular Probes) performed at 3 (A–C) and 21 (D–F) days after plating: upper (A, D); middle (B, E); and lower (C, F) zones. Osteoarthritis and Cartilage 2003 11, 653-664DOI: (10.1016/S1063-4584(03)00120-1)

Fig. 8 Cell tracking demonstrating that the encapsulated cells stayed in the respective layers. Abbreviations: U—upper; M—middle; and L—lower. Osteoarthritis and Cartilage 2003 11, 653-664DOI: (10.1016/S1063-4584(03)00120-1)

Fig. 9 Histology of a multi-layered PEGDA hydrogel encapsulated with different zone chondrocytes for different layers: safranin-O staining (A–C) and immunohistochemistry for type II collagen (D–I) (200×, meter bar=100μm). Each layer of the constructs showed similar findings to that of native cartilage (A, D—upper; B, E—middle; and C, F—lower zones). Negative controls without primary antibody had no positive signals (G—upper zone, H—lower zone) and a positive control with a cartilage slice of lower zone (I). Osteoarthritis and Cartilage 2003 11, 653-664DOI: (10.1016/S1063-4584(03)00120-1)