Volume 20, Issue 6, Pages (June 2012)

Slides:



Advertisements
Similar presentations
Volume 21, Issue 12, Pages (December 2013)
Advertisements

Biology of Amyloid: Structure, Function, and Regulation
Volume 19, Issue 8, Pages (August 2011)
Thor Seneca Thorsen, Rachel Matt, William I. Weis, Brian K. Kobilka 
Volume 19, Issue 9, Pages (September 2011)
Structural Basis for Vertebrate Filamin Dimerization
Solution Structure of the U11-48K CHHC Zinc-Finger Domain that Specifically Binds the 5′ Splice Site of U12-Type Introns  Henning Tidow, Antonina Andreeva,
The 19S Cap Puzzle: A New Jigsaw Piece
Volume 23, Issue 12, Pages (December 2015)
Chen-Chou Wu, William J. Rice, David L. Stokes  Structure 
Volume 20, Issue 6, Pages (June 2012)
Chaperone-Assisted Crystallography with DARPins
Volume 18, Issue 11, Pages (November 2010)
Matthew L. Baker, Tao Ju, Wah Chiu  Structure 
Volume 24, Issue 3, Pages (March 2016)
Volume 23, Issue 7, Pages (July 2015)
Structure of the Oligosaccharyl Transferase Complex at 12 Å Resolution
A Model for the Solution Structure of the Rod Arrestin Tetramer
Crystal Structure of Tetrameric Arabidopsis MYC2 Reveals the Mechanism of Enhanced Interaction with DNA  Teng-fei Lian, Yong-ping Xu, Lan-fen Li, Xiao-Dong.
Charlotte Hodson, Andrew Purkiss, Jennifer Anne Miles, Helen Walden 
Volume 19, Issue 10, Pages (October 2011)
Volume 20, Issue 10, Pages (September 2017)
Structural Insights into the COP9 Signalosome and Its Common Architecture with the 26S Proteasome Lid and eIF3  Radoslav I. Enchev, Anne Schreiber, Fabienne.
Beena Krishnan, Lila M. Gierasch  Chemistry & Biology 
Structural and Functional Studies of the 252 kDa Nucleoporin ELYS Reveal Distinct Roles for Its Three Tethered Domains  Silvija Bilokapic, Thomas U. Schwartz 
Volume 16, Issue 9, Pages (September 2008)
Volume 16, Issue 5, Pages (May 2008)
Volume 24, Issue 8, Pages (August 2016)
Volume 24, Issue 6, Pages (June 2016)
Jana Broecker, Bryan T. Eger, Oliver P. Ernst  Structure 
Structural Basis for Vertebrate Filamin Dimerization
Crystal Structure of β-Arrestin at 1.9 Å
Volume 20, Issue 6, Pages (June 2012)
Volume 16, Issue 6, Pages (June 2008)
Ryan C. Wilson, Meghan A. Jackson, Janice D. Pata  Structure 
Volume 16, Issue 4, Pages (April 2008)
Volume 21, Issue 6, Pages (June 2013)
Volume 20, Issue 3, Pages (March 2012)
Structure of the Catalytic Region of DNA Ligase IV in Complex with an Artemis Fragment Sheds Light on Double-Strand Break Repair  Takashi Ochi, Xiaolong.
Structure of Yeast OSBP-Related Protein Osh1 Reveals Key Determinants for Lipid Transport and Protein Targeting at the Nucleus-Vacuole Junction  Mohammad.
Volume 21, Issue 9, Pages (September 2013)
Volume 16, Issue 8, Pages (August 2008)
Coiled-Coil Domains of SUN Proteins as Intrinsic Dynamic Regulators
Volume 21, Issue 1, Pages (January 2013)
Volume 25, Issue 11, Pages e3 (November 2017)
Volume 19, Issue 8, Pages (August 2011)
The Unmasking of Telomerase
Volume 19, Issue 9, Pages (September 2011)
Thomas H. Schmidt, Yahya Homsi, Thorsten Lang  Biophysical Journal 
Volume 23, Issue 4, Pages (April 2015)
Volume 16, Issue 3, Pages (March 2008)
Volume 20, Issue 7, Pages (July 2012)
Volume 22, Issue 8, Pages (August 2015)
Volume 17, Issue 8, Pages (August 2009)
A YidC-like Protein in the Archaeal Plasma Membrane
Volume 20, Issue 4, Pages (April 2012)
Vilas Menon, Brinda K. Vallat, Joseph M. Dybas, Andras Fiser  Structure 
Volume 24, Issue 3, Pages (March 2016)
Volume 20, Issue 1, Pages (January 2012)
Volume 13, Issue 5, Pages (May 2005)
Volume 23, Issue 4, Pages (April 2015)
Volume 23, Issue 12, Pages (December 2015)
A Model for the Solution Structure of the Rod Arrestin Tetramer
Volume 20, Issue 3, Pages (March 2012)
Volume 25, Issue 11, Pages e3 (November 2017)
Volume 15, Issue 9, Pages (September 2007)
Sabine Pokutta, William I. Weis  Molecular Cell 
Crystal Structure of β-Arrestin at 1.9 Å
Matthew T. Eddy, Tatiana Didenko, Raymond C. Stevens, Kurt Wüthrich 
Structure of the Mtb CarD/RNAP β-Lobes Complex Reveals the Molecular Basis of Interaction and Presents a Distinct DNA-Binding Domain for Mtb CarD  Gulcin.
Presentation transcript:

Volume 20, Issue 6, Pages 967-976 (June 2012) Fusion Partner Toolchest for the Stabilization and Crystallization of G Protein-Coupled Receptors  Eugene Chun, Aaron A. Thompson, Wei Liu, Christopher B. Roth, Mark T. Griffith, Vsevolod Katritch, Joshua Kunken, Fei Xu, Vadim Cherezov, Michael A. Hanson, Raymond C. Stevens  Structure  Volume 20, Issue 6, Pages 967-976 (June 2012) DOI: 10.1016/j.str.2012.04.010 Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 1 Five Fusion Domains Selected for Fusion into the Third Intracellular Loop of A2AAR and β2AR Figure illustrating the insertion of five fusion domains into the ICL3 of a typical GPCR, represented as a transmembrane snake plot. The five domains are a C-terminal fragment of T4L (PDB ID 2O7A, MW 15.9 kDa), flavodoxin (PDB ID 1I1O, MW 14.9 kDa), xylanase (PDB ID 2B45, MW 19.1 kDa), rubredoxin (PDB ID 1FHM, MW 5.5 kDa), and cytochrome b562RIL (PDB ID 1M6T, MW 10.9 kDa). These domains exhibit a variety of secondary structures consisting of either α helices, β sheets, or a combination of both. Numbers indicate distance (Å) between the N and C termini of each domain. T4 Lysozyme (PDB ID 2LZM, MW 18.6 kDa) is shown for reference. See also Table S1. Structure 2012 20, 967-976DOI: (10.1016/j.str.2012.04.010) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 2 Diagram of Fusion Partner Insertion Sites for Both A2AAR and β2AR Constructs The construct number in the first column as well as the alphanumeric insertion site are used as a reference for all the constructs referred to in the main text. For example, insertion site B2 refers to the initial insertion site of T4L into A2AAR-T4L, between residues L208 and R222. Structure 2012 20, 967-976DOI: (10.1016/j.str.2012.04.010) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 3 Purified Chimeras Analyzed by SDS-PAGE and Visualized by Coomassie Staining and α-Flag Western Immunoblots Coomassie stained gels are on the left, and the equivalent western immunoblots on the right. Multiple receptor bands are due, in part, to differential glycosylation states of the receptor, and can be collapsed after deglycosylation with PNGaseF and reduction by a reducing agent. See also Figure S1. Structure 2012 20, 967-976DOI: (10.1016/j.str.2012.04.010) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 4 Analytical Size Exclusion Chromatography Analysis of Each Chimera Signals represent fluorescence emission at 350 nm (excitation at 280 nm). The rightmost box of each row shows the normalized and overlaid profiles for comparative purposes. Construct numbers are in parenthesis after construct name. Structure 2012 20, 967-976DOI: (10.1016/j.str.2012.04.010) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 5 Normalized Fluorescence-Based Thermostability Profiles of Receptor-Fusion Chimeras Thermostability profiles for initial A2AAR chimera screen (constructs 3, 5, 7, 12) with ZM241385 (A), initial A2AAR chimera screen (constructs 3, 5, 7, 12) with UK432,097 (B), junction optimization for A2AAR-Rubredoxin with ZM241385 (constructs 7–11) (C), junction optimization for A2AAR-BRIL with ZM241385 (constructs 12–16) (D), and initial β2AR chimera screen (constructs 19–24) with timolol (E). Construct numbers in parenthesis after name. Structure 2012 20, 967-976DOI: (10.1016/j.str.2012.04.010) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 6 Representative Crystals and Diffraction of A2AAR-BRIL and β2AR-BRIL in LCP A2AAR-BRIL/ZM241385 (construct 16) (A) and β2AR-BRIL/timolol (construct 24) (B). Crystals grew to ∼60 × 10 × 3 μm for A2AAR-BRIL and 80 × 15 × 5 μm for β2AR-BRIL. Inset shows the same image under cross polarized light. Diffraction patterns for A2AAR-BRIL (C) and β2AR-BRIL (D). Inset shows magnified view around diffraction spot enclosed by the red box. Structure 2012 20, 967-976DOI: (10.1016/j.str.2012.04.010) Copyright © 2012 Elsevier Ltd Terms and Conditions

Figure 7 Structural Comparison of A2AAR Solved by Different Engineering Methods (A) High-resolution crystal structure of A2AAR-BRIL PDB ID 4EIY (green), superimposed with A2AAR-T4L (PDB ID 3EML, yellow) and thermostabilized A2AAR (PDB ID 3PWH, blue). (B) Expanded view of the junction site enclosed by the red box in (A). The cytoplasmic ends of helix V and helix VI of A2AAR-BRIL and thermostabilized A2AAR superimpose very well, whereas the helices of A2AAR-T4L must diverge to accommodate the insertion of T4L (T4L domain not shown). (C) Superimposition of the fused BRIL (PDB ID 4EIY, green), with standalone BRIL (PDB ID 1M6T, orange), cytochrome b562 with heme (PDB ID 256B, magenta), and NMR models of apocytochrome b562 (PDB ID 1YYX, gray) suggest high rigidity in the protein core (bottom half) and high flexibility in the termini and loop II (top half), especially in the apo structures. See also Figure S2. Structure 2012 20, 967-976DOI: (10.1016/j.str.2012.04.010) Copyright © 2012 Elsevier Ltd Terms and Conditions