(Lawrence Berkeley National Laboratory) Isomer Spectroscopy of the Heaviest Elements Rod Clark (Lawrence Berkeley National Laboratory)
Outline Motivation for studying structure of heaviest nuclei K-isomers in Z≥100 region The Berkeley Gas-Filled Separator (BGS) Recent results: 50Ti+208Pb→256Rf+2n (σ≈20nb) 48Ca+209Bi→255Lr+2n (σ≈300nb) Heavy element spectroscopy with GRETINA+BGS Summary
Motivation Single-particle levels → shell structure Next major spherical gaps Deformed gaps Deformation and collectivity K-isomerism Rotational structures Low-lying vibrations Pairing properties Multi-quasiparticle states Effects on rotation Effects on alpha decay Effects fission decay
K-Isomers in Z≥100 Nuclei RITU at JYFL FMA at ANL Nature 422 896 (2006) FMA at ANL
Conversion Electron and Gamma Spectroscopy S.K.Tandel et al., PRL 97 082502 (2006)
Berkeley Gas-filled Separator Large acceptance: 45 msr (± 9° vertical, ±4.5° horizontal) Highest transmission ( Ni+Pb: 70% Ca+Pb: 60% Mg+U: 18% ) Large bend angle: 70° Lowest background rates ( 40Hz/pmA 20Hz/pmA 100Hz/pmA )
Focal Plane Detectors 16×16 strip DSSD 1mm thick, 5cm by 5cm 1) Recoil implanted in pixel of DSSD 2) Burst of conversion electrons in same pixel from isomer decay 3) Gamma-rays in coincidence with electron burst 4) Recoil decays in same pixel by alpha/fission Key idea was to tag on isomer by searching for burst of conversion electrons and using a single pixel as a calorimeter. G.D. Jones (Liverpool), NIM A 488 471 (2002).
256Rf: Z=104, N=152 r-e-e-f r-e-e-f 50Ti+208Pb→256Rf+2n at 243 MeV (σ≈20nb), 200pnA, 6 days Electrons Gamma Rays r-e-e-f r-e-e-f
Rf 256 104 152 >2200 t1/2=27(6)ms Kp=(7-,8-) ≈1400 17(2)ms 6- 0+ 2+ 4+ Kp=(2-) 3- 4- 5- 6- ≈946 ≈46 256 Rf 104 152 Kp=(5-) ≈1120 25(2)ms ≈1400 17(2)ms Kp=(7-,8-) t1/2=27(6)ms >2200 900 H. B. Jeppesen et al., Submitted to PRL
255Lr: Z=103, N=152 48Ca+209Bi→255Lr+2n at 222 MeV (σ≈300nb), 300pnA, 4 days 7/2 19/2 ~x+800 ~x+1400 x
247Es: Z=99, N=148 g-spectroscopy following a-decay of 255Lr→251Md→247Es
Eisteinium (Z=99) Systematics Re-examined 251Md 251Md a1 a2 a g=243 g=294 g=243 g=294 0+x 247Es 247Es F.P.Hessberger et al., EPJ A 26 233 (2005) A. Chatillon et al., EPJ A 30 397 (2006)
? Eisteinium (Z=99) Systematics Re-examined 251Md 251Md a1 a2 a g=243 247Es 247Es F.P.Hessberger et al., EPJ A 26 233 (2005) A. Chatillon et al., EPJ A 30 397 (2006)
Transfermium Spectroscopy with GRETINA+BGS The best heavy element separator with the best g-ray detector system 48Ca+208Pb→254No+2n σ~2 μb 2000 Counts Energy (keV) 50Ti+208Pb→256Rf+2n σ~20 nb 25 Counts 6+→4+ Assumptions for simulation: sTOT = 1 barn Target = 0.5 mg/cm2 Beam Current = 50 pnA eg / crystal = 0.0067 Mg = 10 → 30.3 kHz/crystal Energy (keV)
Summary New generation of spectroscopy experiments on heaviest elements RITU at JYFL, FMA at ANL, BGS at LBNL, GABRIELLA at Dubna, SHIP at GSI, VAMOS at GANIL+… Decay spectroscopy at BGS able to reach Sg (Z=106) - single-particle states - K-isomerism - low-lying rotational and vibrational modes Prompt spectroscopy with GRETINA at BGS able to reach Rf (Z=104) - rotation versus fission - moments of inertia, alignments - configuration assignments Can modern microscopic theories reproduce experiment?
Thanks!