Start HYSYS then choose “File, New, Case”

Slides:



Advertisements
Similar presentations
ProgressBook User Start-Up
Advertisements

Start HYSYS then choose “File, New, Case”. On this screen which opens, which is called the “Basis Environment”, the “Components” tab at the bottom and.
Window Movie Maker Presented by Mr. Bran.
The essentials managers need to know about Excel
Mouse Tutorial for Win XP In this tutorial you will learn to: Move the mouse Click and double click Make selections Manage windows Use menus Click the.
Step-by-Step: Add a Graphical Hyperlink USE the Special Events Final presentation that is still open from the previous exercise. 1.Go to slide 4, and click.
Gateway Program Go to along the left side, in the third section, click on The Gateway.
Microsoft Office 2010 Access Chapter 1 Creating and Using a Database.
Managing Grades with Excel Viewing Help To view Help 1.Open Excel on your computer. 2.In the top right hand corner of the Excel Screen type in the.
Inventory Throughout this slide show there will be hyperlinks (highlighted in blue) follow the hyperlinks to navigate to the specified Topic or Figure.
Window Movie Maker PRESENTED BY MARTIN SEBERA What is Windows Movie Maker?  Windows Movie Maker is a fun and easy to use video editing program that.
Chapter 3 Maintaining a Database
1 iSee Player Tutorial Using the Forest Biomass Accumulation Model as an Example ( Tutorial Developed by: (
Lesson No:9 MS-Word Tools, Mail Merge and working with Tables CHBT-01 Basic Micro process & Computer Operation.
 Starting Excel 2003  Using Help  Workbook Management  Cursor Management  Manipulating Data  Using Formulae and Functions  Formatting Spreadsheet.
InDesign CS3 Lesson 4 ( Only pages ) Importing and Editing Text.
Creating a composition In this tutorial you will learn how to create and save a composition.
 In the previous section you specified the stream conditions in the Workbook property view. Next you will input the composition information in the Stream.
Chapter 3: Referencing and Names Spreadsheet-Based Decision Support Systems Prof. Name Position (123) University Name.
First Second first second first second third fourth.
Configuring a New Program in PLC’s Window 7. Step 1 Click on the Blank Paper icon to begin a new program.
Access Module Implementing a Database with Microsoft Access A Great Module on Your CD.
Start HYSYS then choose “File, New, Case”. On this screen which opens, which is called the “Basis Environment”, click on the “Components” tab on the left.
You’ll Make a spreadsheet which will be like a Mad Libs Game. These Are The Directions.
Getting Started With Alice: The Basics. Step 1: Background Open up Alice, and choose a background for your Alice world. Your world is something you can.
1 Pertemuan 10 Using Type Matakuliah: U0344 / DESKTOP 1 Tahun: 2006.
Example (ABSORBER) Problem statement: CO2 is absorbed into propylene carbonate in a packed column. The inlet gas stream is 20 mol% CO2 and 80 mol% methane.
Getting Started with Microsoft Word
Lecturer: Dalia Mirghani
Windows Tutorial 3 Personalizing Your Windows Environment
The Essentials of Alice (Bunny)
Creating a Presentation
NOODLETOOLS SIGN-IN Student ID #
Copyright © 2016 Pearson Canada Inc.
Getting Started With Alice: The Basics
International Computer Driving Licence Syllabus version 5.0
Setting up Categories, Grading Preferences and Entering Grades
Microsoft Excel.
Excel 2010 Screen Symbols.
Enhancing Forms with OLE Fields, Hyperlinks, and Subforms
RAD-IT Architecture Software Training
Microsoft Excel 101.
Chapter 6 Working with Publisher Tables
Start HYSYS then choose “File, New, Case”
Office 2010 and Windows 7: Essential Concepts and Skills
Chapter 7 Advanced Form Techniques
Creating a Worksheet and an Embedded Chart
HydraFLASH Tutorial 1.2 Editing a composition.
TeammateTime Manager Training
Using Charts in a Presentation
Proxies Granting proxy authorization enables another provider to access your Inbox Documents and handle them for you. Your proxy can review, sign, refuse,
Benchmark Series Microsoft Word 2016 Level 2
Word offers a number of features to help you streamline the formatting of documents. In this chapter, you will learn how to use predesigned building blocks.
Excel: Excel Basics Participation Project
Excel: Excel Basics Participation Project
How to PostPower Point Presentations
Microsoft Excel 2007 Introduction to Spreadsheet Programs
Two methods to observe tutorial
Getting Started With Alice: The Basics
Key Applications Module Lesson 16 — Excel Essentials
Introduction to Excel 2007 Part 3: Bar Graphs and Histograms
Creating Additional Input Items
HIBBs is a program of the Global Health Informatics Partnership Learning the Basics of Microsoft Word 2019 and Microsoft office support TFN
Fundamentals of Using Excel
Chapter 8 Using Document Collaboration and Integration Tools
ADVANCED THERMODYNAMICS 8th semester
MAINTAINING FILES AND CUSTOMIZING WINDOWS Section 2
Presentation transcript:

Start HYSYS then choose “File, New, Case” Start HYSYS then choose “File, New, Case”. On this screen which opens, which is called the “Basis Environment”, click on the “Components” tab on the left panel, then choose “Add”.

After selecting “Add”, the screen above opens where you can add components to the project. HYSYS has a wide range of build-in components, but you must specify which components you will be using. In this case, we are going to use the C1 – C5 paraffins, so we begin choosing them and using the “Add” button”.

last After highlighting the component you want, click the “Add Pure” button”. Repeat to add all the C1 – C5 normal paraffins. You can use the default name “Component List-1”. If you make a mistake, use the “Delete” button to remove the component. When you are done, go to the “Fluid Packages” link in the left panel.

On the “Fluid Packages” page, click “Add” On the “Fluid Packages” page, click “Add”. You use “Fluid Packages” to specify the thermodynamics modelling module to be used.

window first In the “Fluid Package: Basis -1” window (above), look down the “Property Package Selection” window toward the left and choose “UNIQUAC”. You can choose other models, but choose wisely, not indiscriminately. Note that a small window opens to the right. This window has some of the main assumptions to be used in the calculation. Since UNIQUAC primarily simulates the liquid phase, one of the options is the Vapour Model to be used, which is ideal gas by default. Switch that to “PR”.

window last The “Density Method, by default, is Costald. What does your textbook recommend for liquid densities? S&VN cover the Rackett equation. If you use the dropdown menu on Density Method, you will find “Rackett” so let’s use that. When you are done, click on the “Simulation” link in the lower left sidebar. You may get some warnings, but just take OK and move on.

This is the simulation environment where the process is built This is the simulation environment where the process is built. The first time you start HYSYS, the palette of items that I have docked to the right may be floating. You can dock them if you wish, or leave them. Now, on the palette, rollover the blue arrow near the upper left corner. It should popup the message “material stream”. One click on the arrow will grab it, then you rollover to the blank main page and drop with another click.

The arrow is labeled “1” by default and is a flow stream The arrow is labeled “1” by default and is a flow stream. In many instances, HYSYS will calculate properties of streams, but we also have the ability to specify properties. Always be cognizant of the fact that the phase rule limits the number of properties you can specify. In this case, we are beginning with an inlet stream to the PFD, and we want to tell HYSYS what the properties are. To do this, begin by double-clicking on the stream (the arrow). A new window will open.

We are going to specify the composition of this feedstream We are going to specify the composition of this feedstream. With a specified composition, if the mixture is a single phase, we can also choose T and P to completely specify the thermodynamic properties. If it forms two phases, we can only specify T or P, not both. We will see how HYSYS handles this shortly. Click on “Composition” in the left window first.

We can enter the composition of the stream many ways We can enter the composition of the stream many ways. HYSYS allows weight or mole fraction and other systems. Note that all the components you specified in the basis environment are in the table to the right. Below the table, find the “Edit” button and click on it to open a new window.

In this screen, we can choose the composition basis, but we want to stick with mole fractions. Highlight the methane mole fraction, and type “1” and press <enter>. The highlight moves to the Ethane row, then type “2”, followed on the next row by “3”, then “4” then “5”. You have specified 1 part methane, 2 parts ethane, 3 parts propane, etc. Next, click on “Normalize” to make these relative amounts into mole fractions. The screen then updates.

Your composition should look as given above Your composition should look as given above. The “normalize” button makes the mole fractions add to 1 and saves you the trouble. Now click OK, and this screen for inputting composition will close.

Notice now that the message in yellow is “Unknown Temperature” Notice now that the message in yellow is “Unknown Temperature”. HYSYS will keep informing you where it doesn’t have enough information. Click on the “Conditions” link over on the left-hand side of the worksheet, and we will see how to specify conditions.

Highlight the box to the right of “Temperature (C)” and enter “50” Highlight the box to the right of “Temperature (C)” and enter “50”. Note that as you type, a box to the left opens and displays the units “C”. When you press <enter>, you accept these default units. Alternatively, you could click on the dropdown arrow, and choose new units, but let’s practice that process with pressure rather than temperature, so just accept the default units.

Note that the message now says “Unknown Pressure” Note that the message now says “Unknown Pressure”. Highlight the input box for pressure, type “2”, then click on the pressure unit dropdown menu and choose “atm”. When you press <enter>, the pressure (2 atm) is converted to 1.013 bar_g and that will appear in the pressure box. Alternately, you could have entered “1.013” and taken the default units. The yellow message bar should now say “Unknown Flowrate”. Enter “1” in the “Molar Flow (kgmole/hr)” input box. Note that “bar_g” is “bars gauge”.

Once you have entered T, P, and a flowrate, the message bar should change to green and say “OK”. HYSYS computes all the remaining conditions. Note that the conditions you specified are in blue, those HYSYS computed are in black. Note especially the box “Vapour/Phase Fraction” which is computed to be 1.0000. This means the stream is all vapor, and in this case, the stream is actually superheated.

Next, let’s do a dewpoint calculation Next, let’s do a dewpoint calculation. Highlight the temperature input box and press the delete key. Highlight the “Vapour/Phase Fraction” input box, and enter “1”. Since you already specified the pressure, by specifying the vapor fraction to be 1, you are specifying two phases by telling HYSYS you want the dewpoint and that satisfies the phase rule. The two phases are a vapor phase and an infinitely small droplet of liquid phase.

You should have the conditions given above You should have the conditions given above. Note that the dewpoint is 29.54ºC at 1.013 bar_g. Note also that you are unable to highlight the temperature input box anymore, and the text in the box is now black. This is because temperature is a computed result. Now, how would you find the composition of the infinitely small liquid droplet in equilibrium with the vapor phase? Click on the “Composition” link in the left-hand box.

You will see the window where you originally entered the composition, and the composition you entered was the overall composition. Stretch the window to the right until you see the “Liquid Phase” heading on the table (or, you could scroll to the right). You will see the vapor phase composition to be identical to the overall composition (it is all vapor after all) and the composition of the infinitely small droplet of liquid is under “Liquid Phase”.

To do a bubble-point calculation, go back to the “Conditions” link, and enter “0” in the vapor fraction input box. You will have an infinitely small bubble of vapor in the liquid. Note that the bubble-point is -236.9ºC – quite cold because methane is very volatile.

Go back to the “Composition” link, and check the vapor composition Go back to the “Composition” link, and check the vapor composition. It is 100% methane because of the very high relative volatility of methane at this temperature. If you want to see the K values, click on the “K Value” link in the left column and you will see that the methane K value is 15.00 while all the other components have K values smaller than 10-9.

Finally, enter “0.5” for the vapor phase fraction on the “Conditions” link.

Check the “Composition” link to see the vapor and liquid compositions Check the “Composition” link to see the vapor and liquid compositions. You may need to expand the width of the window to see both the vapor and liquid compositions at the same time.

Similar calculations can be done fixing temperature, and computing dew-pressure and bubble-pressure. To do this, delete the pressure, and enter a fixed temperature – say 50ºC, then put in a vapor faction of 1, 0, and 0.5 in succession. The screen capture above shows a dew-pressure of 2.954 bar_g at 50ºC. An infinitesimally small droplet of liquid would be formed when a gaseous mixture at 50ºC is compressed at constant T to 2.954 bar_g.

For a vapor faction of 0 at 50ºC, an infinitesimally small bubble of vapor would be formed when a liquid mixture at 50ºC is at 31.61 bar_g. Check the vapor composition and you will see it is 45.03% methane.

Practice Exercises Find the pressure and vapor and liquid composition at T=50ºC, vapor fraction = 0.5 Repeat the calculations in this tutorial, but use the Peng-Robinson equation of state instead of UNIQUAC for the liquid phase as well as the gas phase. To change to Peng-Robinson: Go back to the basis environment by clicking on the beaker icon labelled “Properties” on the side lower left sidebar. Click the Fluid Packages/Basis-1 tab and choose Peng-Robinson from the Property Package Selection list. Choose “Rackett” for Density in the Options window that opens. Return to the Simulation – use the “Simulation link in the lower left sidebar. Compare results of Peng-Robinson to UNIQUAC. Why are the results different but approximately the same?