Microglia Colonization of Developing Zebrafish Midbrain Is Promoted by Apoptotic Neuron and Lysophosphatidylcholine  Jin Xu, Tienan Wang, Yi Wu, Wan Jin,

Slides:



Advertisements
Similar presentations
Determination of Endothelial Stalk versus Tip Cell Potential during Angiogenesis by H2.0-like Homeobox-1  Shane P. Herbert, Julia Y.M. Cheung, Didier Y.R.
Advertisements

Volume 34, Issue 6, Pages (September 2015)
Fate Restriction in the Growing and Regenerating Zebrafish Fin
Volume 14, Issue 1, Pages (January 2008)
Long-Range Ca2+ Waves Transmit Brain-Damage Signals to Microglia
The Vascular Niche Regulates Hematopoietic Stem and Progenitor Cell Lodgment and Expansion via klf6a-ccl25b  Yuanyuan Xue, Junhua Lv, Chunxia Zhang, Lu.
Volume 32, Issue 1, Pages (January 2015)
A Death Trap for Microglia
Volume 35, Issue 2, Pages (October 2015)
Volume 55, Issue 2, Pages (July 2007)
Volume 25, Issue 7, Pages (March 2015)
Alessandra Maria Casano, Marvin Albert, Francesca Peri  Cell Reports 
Tjakko J. van Ham, David Kokel, Randall T. Peterson  Current Biology 
Volume 15, Issue 6, Pages (March 2005)
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss  Neuron 
Volume 16, Issue 4, Pages (April 2009)
Transiently Reorganized Microtubules Are Essential for Zippering during Dorsal Closure in Drosophila melanogaster  Ferenc Jankovics, Damian Brunner  Developmental.
Real-Time Visualization of Neuronal Activity during Perception
Stimulation of hepatocarcinogenesis by neutrophils upon induction of oncogenic kras expression in transgenic zebrafish  Chuan Yan, Xiaojing Huo, Shu Wang,
Volume 43, Issue 5, Pages e3 (December 2017)
Vagus Motor Neuron Topographic Map Determined by Parallel Mechanisms of hox5 Expression and Time of Axon Initiation  Gabrielle R. Barsh, Adam J. Isabella,
Volume 14, Issue 2, Pages (February 2008)
Ying Li, Xu-fei Du, Chang-sheng Liu, Zi-long Wen, Jiu-lin Du 
Volume 8, Issue 6, Pages (September 2014)
J. Muse Davis, Lalita Ramakrishnan  Cell 
Volume 42, Issue 1, Pages (April 2004)
Volume 68, Issue 1, Pages (October 2010)
Volume 24, Issue 5, Pages (March 2013)
Volume 13, Issue 9, Pages (December 2015)
Volume 22, Issue 4, Pages (April 2012)
Petra Haas, Darren Gilmour  Developmental Cell 
Alessandra Maria Casano, Marvin Albert, Francesca Peri  Cell Reports 
Volume 22, Issue 5, Pages (May 2012)
Volume 60, Issue 4, Pages (November 2008)
Katie S. Kindt, Gabriel Finch, Teresa Nicolson  Developmental Cell 
Live Imaging of Tumor Initiation in Zebrafish Larvae Reveals a Trophic Role for Leukocyte-Derived PGE2  Yi Feng, Stephen Renshaw, Paul Martin  Current.
Celia E. Shiau, Kelly R. Monk, William Joo, William S. Talbot 
Volume 23, Issue 2, Pages (August 2012)
Naohito Takatori, Gaku Kumano, Hidetoshi Saiga, Hiroki Nishida 
Live Imaging of Neuronal Degradation by Microglia Reveals a Role for v0-ATPase a1 in Phagosomal Fusion In Vivo  Francesca Peri, Christiane Nüsslein-Volhard 
The Snail Family Member Worniu Is Continuously Required in Neuroblasts to Prevent Elav-Induced Premature Differentiation  Sen-Lin Lai, Michael R. Miller,
Vangl2 Promotes Wnt/Planar Cell Polarity-like Signaling by Antagonizing Dvl1-Mediated Feedback Inhibition in Growth Cone Guidance  Beth Shafer, Keisuke.
Jin Wan, Rajesh Ramachandran, Daniel Goldman  Developmental Cell 
Volume 18, Issue 4, Pages (April 2010)
Volume 19, Issue 24, Pages (December 2009)
Volume 31, Issue 1, Pages (October 2014)
Volume 80, Issue 6, Pages (December 2013)
Bmp2 Signaling Regulates the Hepatic versus Pancreatic Fate Decision
Volume 29, Issue 5, Pages (June 2014)
Let-7-Complex MicroRNAs Regulate the Temporal Identity of Drosophila Mushroom Body Neurons via chinmo  Yen-Chi Wu, Ching-Huan Chen, Adam Mercer, Nicholas S.
Irf4 Regulates the Choice between T Lymphoid-Primed Progenitor and Myeloid Lineage Fates during Embryogenesis  Sifeng Wang, Qiuping He, Dongyuan Ma, Yuanyuan.
Drosophila ASPP Regulates C-Terminal Src Kinase Activity
MiR-219 Regulates Neural Precursor Differentiation by Direct Inhibition of Apical Par Polarity Proteins  Laura I. Hudish, Alex J. Blasky, Bruce Appel 
Aljoscha Nern, Yan Zhu, S. Lawrence Zipursky  Neuron 
Volume 128, Issue 2, Pages (January 2007)
Drosophila Maelstrom Ensures Proper Germline Stem Cell Lineage Differentiation by Repressing microRNA-7  Jun Wei Pek, Ai Khim Lim, Toshie Kai  Developmental.
Julie E. Cooke, Hilary A. Kemp, Cecilia B. Moens  Current Biology 
Volume 19, Issue 8, Pages (May 2017)
Volume 16, Issue 3, Pages (July 2016)
Intralineage Directional Notch Signaling Regulates Self-Renewal and Differentiation of Asymmetrically Dividing Radial Glia  Zhiqiang Dong, Nan Yang, Sang-Yeob.
Volume 26, Issue 8, Pages (April 2016)
Temporally Regulated Asymmetric Neurogenesis Causes Left-Right Difference in the Zebrafish Habenular Structures  Hidenori Aizawa, Midori Goto, Tomomi.
Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor  Celine Santiago, Greg J. Bashaw  Cell Reports 
Masakazu Hashimoto, Hiroshi Sasaki
Dysregulation of Microglial Function Contributes to Neuronal Impairment in Mcoln1a- Deficient Zebrafish  Wan Jin, Yimei Dai, Funing Li, Lu Zhu, Zhibin.
Dopamine Controls Neurogenesis in the Adult Salamander Midbrain in Homeostasis and during Regeneration of Dopamine Neurons  Daniel A. Berg, Matthew Kirkham,
Volume 15, Issue 6, Pages (March 2005)
Piezo-like Gene Regulates Locomotion in Drosophila Larvae
Volume 27, Issue 1, Pages e5 (April 2019)
Volume 17, Issue 6, Pages (December 2002)
Presentation transcript:

Microglia Colonization of Developing Zebrafish Midbrain Is Promoted by Apoptotic Neuron and Lysophosphatidylcholine  Jin Xu, Tienan Wang, Yi Wu, Wan Jin, Zilong Wen  Developmental Cell  Volume 38, Issue 2, Pages 214-222 (July 2016) DOI: 10.1016/j.devcel.2016.06.018 Copyright © 2016 Elsevier Inc. Terms and Conditions

Developmental Cell 2016 38, 214-222DOI: (10.1016/j.devcel.2016.06.018) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 1 Microglial Precursors Enter the Optic Tectum via Two Major Routes (A) Coronal (top) and transverse (bottom) views of time-lapse imaging pictures of the midbrain of Tg(-2.8elavl3:eGFP;coro1a:DsRedx) zebrafish embryos indicate one microglia (marked by white arrow) entering the optic tectum from the lateral periphery of the brain. The optic tectum and eyes are indicated by white dashed lines. Red and green signals represent coro1a-DsRedx+ microglia and elavl3-GFP+ neurons, respectively. E, eye; OT, optic tectum. (B) Coronal (top) and transverse (bottom) views of time-lapse imaging pictures of the midbrain of Tg(-2.8elavl3:eGFP;coro1a:DsRedx) zebrafish embryos show one microglia (marked by the white arrow) entering the optic tectum by passing through the ventral part of the midbrain. The optic tectum and eyes are indicated by white dashed lines. Red and green signals represent coro1a-DsRedx+ microglia and elavl3-GFP+ neurons, respectively. E, eye; OT, optic tectum. (C) A schematic diagram of the transverse plane to illustrate the entry routes for the colonization of the optic tectum by microglial precursors. Route 1, the lateral periphery of the brain; route 2, passing through the ventral part of the midbrain; route 3, the dorsal periphery of the brain. See also Figure S1 and Movie S1. Developmental Cell 2016 38, 214-222DOI: (10.1016/j.devcel.2016.06.018) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 2 Microglia Colonization of the Optic Tectum Is Circulation Independent (A) Coronal (top) and transverse (bottom) views of time-lapse imaging pictures of the midbrain of Tg(kdrl:eGFP;coro1a:DsRedx) zebrafish embryos reveal that microglia/microglial precursors (one microglia is marked by a magenta arrowhead) are outside vessels during their colonization of the optic tectum. Red signals represent coro1a-DsRedx+ microglia/microglial precursors. Green signals represent kdrl-GFP+ vessels within the ventral midbrain, whereas cyan signals indicate vessels above the ventral midbrain. The coronal views are stacked confocal images, whereas the transverse planes are single confocal images. (B) Dorsal view of the optic tectum of Tg(-2.8elavl3:eGFP;coro1a:DsRedx) zebrafish embryos injected with or without the tnnt2a MO. The number of optic-tectum-resident microglia only slightly decreased in the 3 dpf tnnt2a morphants but is drastically reduced in the 6 dpf tnnt2a morphants. Red and green signals represent coro1a-DsRedx+ microglia and elavl3-GFP+ neurons, respectively. The optic tectum is indicated by dashed lines. (C) Quantification of the number of optic-tectum-resident microglia in WT Tg(-2.8elavl3:eGFP;coro1a:DsRedx) embryos and tnnt2a morphants. Error bars represent the mean ± SEM. ∗∗p < 0.01, ∗∗∗p < 0.001 (n = 6 for both WT and morphants at 3 dpf and 6 dpf). (D) Measurement of the width of the optic tectum of WT Tg(-2.8elavl3:eGFP;coro1a:DsRedx) embryos and tnnt2a morphants. Error bars represent the mean ± SEM. ∗∗∗p < 0.001 (n = 5 for 3 dpf WT, n = 6 for 6 dpf WT, n = 6 for morphants at both 3 dpf and 6 dpf). (E) Coronal (top) and transverse (bottom) views of time-lapse imaging pictures of the midbrain of Tg(-2.8elavl3:eGFP;coro1a:DsRedx) zebrafish embryos show one microglia (labeled by white arrows) migrating out of the optic tectum in the 5.5 dpf tnnt2a morphants. The optic tectum is indicated by dashed lines. Red and green signals represent coro1a-DsRedx+ microglia and elavl3-GFP+ neurons, respectively. OT, optic tectum. See also Figure S2 and Movie S2. Developmental Cell 2016 38, 214-222DOI: (10.1016/j.devcel.2016.06.018) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 3 Neuron-Specific bcl-2 Overexpression Suppresses Neuronal Cell Death and Blocks Microglia Colonization of the Optic Tectum (A) Acridine orange (AO) staining reveals that neuronal cell death is largely prevented in the optic tectum of 3 dpf Tg(Xla.Tubb:bcl-2) embryos. The optic tectum is indicated by dashed lines. (B) The number of microglia in the optic tectum is drastically reduced in the optic tectum of 3 dpf Tg(Xla.Tubb:bcl-2) embryos. The optic tectum is indicated by dashed lines. Red and green signals represent coro1a-DsRedx+ microglia and elavl3-GFP+ neurons, respectively. (C) Quantification of the number of microglia in the forebrain, midbrain, and hindbrain of 3 dpf WT and Tg(Xla.Tubb:bcl-2) embryos. Error bars represent the mean ± SEM. ∗∗∗p < 0.001 (n = 4). (D) Quantification of the number of microglia in the optic tectum and ventral midbrain of 3 dpf WT and Tg(Xla.Tubb:bcl-2) embryos. Error bars represent the mean ± SEM. ∗∗p < 0.01 (n = 4). (E) Quantification of the number of microglia that migrate into the optic tectum within the 24 hr imaging period (from 2 dpf to 3 dpf) of WT and Tg(Xla.Tubb:bcl-2) embryos. Error bars represent the mean ± SEM. ∗∗∗p < 0.001 (n = 5 for WT embryos, n = 4 for transgenic embryos). (F) Quantification of the percentage of microglia that shuffle out of the optic tectum within the 24 hr imaging period (from 2 dpf to 3 dpf) of WT and Tg(Xla.Tubb:bcl-2) embryos. Error bars represent the mean ± SEM. ∗∗p < 0.01 (n = 5 for WT embryos, n = 4 for transgenic embryos). (G) Coronal (top) and transverse (bottom) views of time-lapse imaging pictures of the midbrain show a typical microglia (labeled by the white arrow) that enters the optic tectum and subsequently migrates out of the optic tectum in the Tg(Xla.Tubb:bcl-2) embryos. The optic tectum and eyes are indicated by dashed lines. Red and green signals represent coro1a-DsRedx+ microglia and elavl3-GFP+ neurons, respectively. E, eye; OT, optic tectum. See also Figure S3 and Movie S3. Developmental Cell 2016 38, 214-222DOI: (10.1016/j.devcel.2016.06.018) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 4 LPC Promotes the Entry of Microglial Precursors into the Brain (A) A schematic diagram of the dorsal view of zebrafish head. The red square indicates the region where LPC or ATPγS is injected. Normally the upper half-brain and lower half-brain are injected with LPC or ATPγS and control buffer, respectively. (B) Dorsal view of the ATPγS-injected brain of Tg(Xla.Tubb:bcl-2;mpeg1:loxP-DsRedx-loxP-GFP) embryos at 4–5 hpi. The upper half-brain is injected with ATPγS and the lower half-brain is injected with control buffer. DsRedx+ cells represent microglia. The midbrain is labeled by dashed lines. (C) Quantification of microglia in ATPγS-injected brain of Tg(Xla.Tubb:bcl-2;mpeg1:loxP-DsRedx-loxP-GFP) embryos at 4–5 hpi. n = 8 for control and ATPγS injection. DsRedx+ cells represent microglia. Error bars represent the mean ± SEM. (D) Dorsal view of the LPC-injected brain of Tg(Xla.Tubb:bcl-2;mpeg1:loxP-DsRedx-loxP-GFP) embryos at 4–5 hpi. The upper half-brain is injected with LPC and the lower half-brain is injected with control buffer. DsRedx+ cells represent microglia. White arrows indicate LPC-induced microglia in the brain. The midbrain is labeled by dashed lines. (E) Quantification of microglia in the LPC-injected brain of Tg(Xla.Tubb:bcl-2;mpeg1:loxP-DsRedx-loxP-GFP) embryos at 4–5 hpi. n = 17 for control and LPC injection. Error bars represent the mean ± SEM. ∗∗∗p < 0.001. (F) Quantification shows that the number of microglia in the LPC-injected brain of Tg(Xla.Tubb:bcl-2;mpeg1:loxP-DsRedx-loxP-GFP) embryos is drastically decreased by 21 hpi. DsRedx+ cells represent microglia. n = 5. Error bars represent the mean ± SEM. ∗∗p < 0.01. (G) Time-lapse imaging pictures show that the microglia in the LPC-injected brain of Tg(mpeg1:loxP-DsRedx-loxP-eGFP) embryos gradually migrate out of the brain. DsRedx+ cells represent microglia. White arrowheads indicate one microglia migrating out of the brain. Dashed lines indicate the midbrain. (H) Dorsal view images of the midbrain of Tg(mpeg1:loxP-DsRedx-loxP-eGFP) control and gpr132b morphants (MO). DsRedx+ cells represent microglia. Dashed lines indicate the midbrain. (I) Quantification of the number of microglia number in the midbrain of Tg(mpeg1:loxP-DsRedx-loxP-eGFP) control and gpr132b morphants (MO). n = 14 for WT control and n = 15 for MO. Error bars represent the mean ± SEM. ∗∗∗p < 0.001. See also Figure S4 and Movie S4. Developmental Cell 2016 38, 214-222DOI: (10.1016/j.devcel.2016.06.018) Copyright © 2016 Elsevier Inc. Terms and Conditions