CS 140 Lecture 19 Standard Modules

Slides:



Advertisements
Similar presentations
CS 140 Lecture 11 Sequential Networks: Timing and Retiming Professor CK Cheng CSE Dept. UC San Diego 1.
Advertisements

CS 140 Lecture 16 System Designs Professor CK Cheng CSE Dept. UC San Diego 1.
Counters Discussion D8.3.
1 CS 140L Lecture 8 System Design Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 10 Sequential Networks: Implementation Professor CK Cheng CSE Dept. UC San Diego 1.
CS 140L Lecture 5 Professor CK Cheng CSE Dept. UC San Diego.
CS 140L Lecture 5 Professor CK Cheng 4/29/02. Asynchronous Counter D Q CLK D Q D Q There are n flip-flops. D FF is the delay of each flip-flop. When n.
1 CS 140 Lecture 12 Standard Combinational Modules Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 9 Professor CK Cheng 4/30/02. Part II. Sequential Network 1.Memory 2.Specification 3.Implementation S XY s i t+1 = g i (S t, x t )
1 CS 140 Lecture 19 Sequential Modules Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 8 Professor CK Cheng 4/26/02. Part II. Sequential Network 1.Memory SR, D, T, JK, 2.Specification S XY s i t+1 = g i (S t, X t )
CSE 140 Lecture 8 Sequential Networks Professor CK Cheng CSE Dept. UC San Diego 1.
CS 140 Lecture 16 System Designs Professor CK Cheng CSE Dept. UC San Diego 1.
CS 140L Lecture 5: Counters Professor CK Cheng CSE Dept. UC San Diego 1.
1 CS 140 Lecture 9 Sequential Networks Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 8 Sequential Networks Professor CK Cheng CSE Dept. UC San Diego.
CSE 140L Lecture 4 Flip-Flops, Shifters and Counters Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 13 Combinational Standard Modules Professor CK Cheng CSE Dept. UC San Diego 1.
CS 140 Lecture 17 System Designs III Professor CK Cheng CSE Dept. UC San Diego 1.
Contemporary Logic Design Sequential Case Studies © R.H. Katz Transparency No Chapter #7: Sequential Logic Case Studies 7.1, 7.2 Counters.
CS 140 Lecture 17 System Designs III Professor CK Cheng CSE Dept. UC San Diego 1.
Sequential Logic Design
CS 140 Lecture 10 Professor CK Cheng 5/02/02. Given the state table, implement with 2 JK flip flops id Q 1 (t) 0 1 Q 0 (t) X(t)
CS 140 Lecture 18 Professor CK Cheng 12/3/02. Standard Sequential Modules 1.Register 2.Shift Register 3.Counter.
1 CS 140 Lecture 18 Sequential Modules: Serial Adders, Multipliers Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 5 Professor CK Cheng CSE Dept. UC San Diego.
CS 140L Lecture 7 Transformation between Mealy and Moore Machines Professor CK Cheng CSE Dept. UC San Diego.
CS 140 Lecture 5 Professor CK Cheng CSE Dept. UC San Diego 1.
CSE 140 Lecture 15 System Designs Professor CK Cheng CSE Dept. UC San Diego 1.
CS 140L Lecture 4 Professor CK Cheng 10/22/02. 1)F-F 2)Shift register 3)Counter (Asynchronous) 4)Counter (Synchronous)
Design of Counters ..
Princess Sumaya Univ. Computer Engineering Dept. Chapter 6:
EE365 Adv. Digital Circuit Design Clarkson University Lecture #12 Registers and Counters.
Counters By Taweesak Reungpeerakul
Counters. November 5, 2003 Introduction: Counters  Counters are circuits that cycle through a specified number of states.  Two types of counters: 
SYEN 3330 Digital SystemsJung H. Kim 1 SYEN 3330 Digital Systems Chapter 7 – Part 2.
CSE 140 Lecture 13 Combinational Standard Modules Professor CK Cheng CSE Dept. UC San Diego 1.
Logic Design (CE1111 ) Lecture 6 (Chapter 6) Registers &Counters Prepared by Dr. Lamiaa Elshenawy 1.
CSE 140 Lecture 15 System Design II CK Cheng CSE Dept. UC San Diego 1.
Synchronous Counters, ripple counter & other counters Lecture 2
CSE 140 Lecture 13 System Designs
CSE 140 Lecture 8 Sequential Networks
Sequential Networks and Finite State Machines
CSE 140 Lecture 14 System Designs
CSE 140 Lecture 14 System Designs
Prof. Hsien-Hsin Sean Lee
Sequential Logic Counters and Registers
Dr. Clincy Professor of CS
D Flip-Flop.
CSE 140 Lecture 16 System Designs
Sequential Networks and Finite State Machines
CSE 140 Lecture 15 System Designs
CSE 140 Lecture 17 System Design II
Digital Logic & Design Dr. Waseem Ikram Lecture No. 31.
CSE 140 Lecture 10 Sequential Networks: Implementation
CSE 140: Components and Design Techniques for Digital Systems
CS 140 Lecture 16 Professor CK Cheng 11/21/02.
CSE 140 Lecture 14 System Design
CS 140 Lecture 15 Sequential Modules
CSE 140 Lecture 16 System Designs II
Professor CK Cheng CSE Dept. UC San Diego
CS M51A/EE M16 Winter’05 Section 1 Logic Design of Digital Systems Lecture 16 March 14 W’05 Yutao He 4532B Boelter Hall
Switching Theory and Logic Design Chapter 5:
CSE 140 Lecture 9 Sequential Networks
Outline Registers Counters 5/11/2019.
Instructor: Alexander Stoytchev
CS 140L Lecture 7 Transformation between Mealy and Moore Machines
CS 140L Lecture 8 Professor CK Cheng 11/19/02.
CSE140 Final Review Xinyuan Wang 06/06/2019.
CSE 140 Lecture 16 System Designs
Presentation transcript:

CS 140 Lecture 19 Standard Modules Professor CK Cheng CSE Dept. UC San Diego

Standard Sequential Modules Register Shift Register Counter

Counter Applications?

Counter: Applications Program Counter Address Keeper: FIFO, LIFO Clock Divider Sequential Machine

Counter Modulo-n Counter Modulo Counter (m<n) Counter (a-to-b) Counter of an Arbitrary Sequence Cascade Counter

Modulo-n Counter D CNT TC LD Clk CLR Q Q (t+1) = (0, 0, .. , 0) if CLR = 1 = D if LD = 1 and CLR = 0 = (Q(t)+1)mod n if LD = 0, CNT = 1 and CLR = 0 = Q (t) if LD = 0, CNT = 0 and CLR = 0 TC = 1 if Q (t) = n-1 and CNT = 1 = 0 otherwise

Modulo-m Counter (m< n) Given a mod 16 counter, construct a mod-m counter (0 < m < 16) with AND, OR, NOT gates Q3 Q2 Q1 Q0 3 2 1 0 CLK CLR CNT D3 D2 D1 D0 0 0 0 0 LD Q2 Q0 X m = 6 Set LD = 1 when X = 1 and (Q3Q2Q1Q0) = (0101), ie m-1

Counter (a-to-b) Given a mod 16 counter, construct an a-to-b counter (0 < a < b < 15) A 5-to-11 Counter Q3 Q2 Q1 Q0 CLR Clk CNT X D3 D2 D1 D0 LD Q3 (b) Q1 0 1 0 1 (a) Q0 Set LD = 1 when X = 1 and (Q3Q2Q1Q0) = b (in this case, 1011)

Counter of an Arbitrary Sequence Given a mod 16 counter, construct a counter with sequence 0 1 5 6 2 3 7 When Q = 1, load D = 5 When Q = 6, load D = 2 When Q = 3, load D = 7 Q2 Q1 Q0 Clk CLR CNT D2 D1 D0 LD Q2’ Q0 X Q2 Q0 Q1 Q0 Q0’

Counter of an Arbitrary Sequence Given a mod 16 counter, construct a counter with sequence 0 1 5 6 2 3 7 K Mapping LD and D, we get Id Q2Q1Q0 LD D2 D1 D0 000 - 1 001 2 010 3 011 4 100 5 101 6 110 7 LD = Q2’ Q0 + Q2Q0’ D2 = Q0 D1 = Q1 D0 = Q0

Counter of an Arbitrary Sequence Count in sequence 0 2 3 4 5 7 6 Id Q2Q1Q0 LD D2 D1 D0 000 1 001 - 2 010 3 011 4 100 5 101 6 110 7 LD = 1 D = 2 When Q(t) = 0 LD = 1 D = 7 When Q(t) = 5 LD = 1 D = 6 When Q(t) = 7 LD = 1 D = 0 When Q(t) = 6 Through K-map, we derive LD = Q2’ Q1’ + Q2Q0 + Q2 Q1 D2 = Q0 D1 = Q1’ + Q0 D0 = Q1’Q0

Cascade Counter A Cascade Modulo 256 Counter Q7,Q6,Q5,Q4 Q3,Q2,Q1,Q0 TC0 CNT LD CNT LD X TC TC Clk Clk D7,D6,D5,D4 D3,D2,D1,D0

Cascade Counter Time 1 2 3 … 13 14 15 16 17 18 19 Q7-4 TC0 Q3-0 TC = 1 when (Q3,Q2,Q1,Q0 )=(1,1,1,1) and X=1 (Q7 (t+1) Q6 (t+1) Q5 (t+1) Q4 (t+1) ) = (Q7 (t) Q6 (t) Q5 (t) Q4 (t) ) + 1 mod 16 when TC0 = 1 The circuit functions as a modulo 256 counter. Time 1 2 3 … 13 14 15 16 17 18 19 Q7-4 TC0 Q3-0