A Bayesian Approach to QCD Sum Rules

Slides:



Advertisements
Similar presentations
23 Jun. 2010Kenji Morita, GSI / XQCD20101 Mass shift of charmonium near QCD phase transition and its implication to relativistic heavy ion collisions Kenji.
Advertisements

Ágnes MócsyQWG Meeting BNL June Quarkonia above Deconfinement and Potential Models Quarkonia above Deconfinement and Potential Models Ágnes.
Η c and χ c at finite temperature from QCD Sum Rules C. A. Dominguez and Yingwen Zhang University of Cape Town, South Africa M. Loewe Pontificia Universidad.
Lattice QCD at finite temperature Péter Petreczky Physics Department and RIKEN-BNL Winter Workshop on Nuclear Dynamics, March 12-18, 2006 Bulk thermodynamics.
Quarkonia correlators and spectral functions Péter Petreczky Physics Department and RIKEN-BNL SQM 2006, March 26-31, 2006 Meson spectral functions and.
The QCD Phase Diagram in Relativistic Heavy Ion Collisions October 24, Inauguration Conference Chiho NONAKA, Nagoya University.
Ágnes Mócsy22 nd Winter Workshop. La Jolla Quarkonia Above Deconfinement Ágnes Mócsy 22 nd Winter Workshop. La Jolla
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
Operator product expansion and sum rule approach to the unitary Fermi gas Schladming Winter School “Intersection Between QCD and Condensed Matter”
Exploring Real-time Functions on the Lattice with Inverse Propagator and Self-Energy Masakiyo Kitazawa (Osaka U.) 22/Sep./2011 Lunch BNL.
XI th International Conference on Quark Confinement and the Hadron Petersburg, Russia Philipp Gubler (RIKEN, Nishina Center) Collaborator:
QCD sum rules in a Bayesian approach YIPQS workshop on “Exotics from Heavy Ion Collisions” YITP Philipp Gubler (TokyoTech) Collaborator: Makoto.
MEM analysis of the QCD sum rule and its Application to the Nucleon spectrum Tokyo Institute of Technology Keisuke Ohtani Collaborators : Philipp Gubler,
P. Gubler, K. Morita, and M. Oka, Phys. Rev. Lett. 107, (2011) K. Suzuki, P. Gubler, K. Morita, and M. Oka, arxiv: [hep-th]
Komaba seminarT.Umeda (Tsukuba)1 A study of charmonium dissociation temperatures using a finite volume technique in the lattice QCD T. Umeda and H. Ohno.
Twist-3 distribution amplitudes of scalar mesons from QCD sum rules Y.M Wang In collaboration with C.D Lu and H. Zou Institute of High Energy Physics,
Hot quarkonium spectral functions from QCD sum rules and MEM Heavy quarks and quarkonia in thermal ECT*, Villazzano, Italy Philipp Gubler.
Heavy quarks in finite temperature lattice QCD Péter Petreczky Physics Department and RIKEN-BNL Exploring QCD : Deconfinement etc, Newton Institute, Cambridge,
Recent developments in lattice QCD Péter Petreczky Physics Department and RIKEN-BNL SQM 2007, June 24-29, 2007 Thermodynamics of 2+1 flavor QCD for nearly.
Heavy Flavor Productions & Hot/Dense Quark Matter 1 Lattice calculations on Heavy flavor ~ Open and Hidden charm states above Tc ~ Takashi Umeda (BNL)
RIKEN Lunch Seminar1 Study of Charmonia at finite temperature in quenched lattice QCD Takashi Umeda (BNL) RIKEN Lunch Seminar, Sept. 15th 2005.
MEM Analysis of Glueball Correlators at T>0 speaker Noriyoshi ISHII (RIKEN, Japan) in collaboration with Hideo SUGANUMA (TITECH, Japan) START.
Modification of nucleon spectral function in the nuclear medium from QCD sum rules Collaborators: Philipp Gubler(ECT*), Makoto Oka Tokyo Institute of Technology.
The phi meson in nuclear matter - recent result from theory - Talk at ECT* Workshop “New perspectives on Photons and Dileptons in Ultrarelativistic Heavy-Ion.
June 13, Hard Probes 2006 Masayuki ASAKAWA Department of Physics, Osaka University Quarkonium States at Finite Temperature An Introduction to Maximum.
Spectral functions of mesons at finite temperature/density Talk at the 31 st Reimei workshop on hadron physics in extreme conditions at J-PARC, Tokai,
Hard Probes Quarkonium states at finite temperature Takashi Umeda (BNL) Hard Probes 2006 June 9-16, 2006, Asilomar Conference Grounds Pacific Grove,
TOWARDS EXOTIC HIDDEN-CHARM PENTAQUARKS IN QCD SUM RULE 陈华星 北京航空航天大学 合作者:陈伟 刘翔 T. G. STEELE 朱世琳 Weihai August 17, 2015.
1 Meson mass in nuclear medium Su Houng Lee Thanks to: Hatsuda + former collaborators + and to Kenji Morita(GSI) and Taesoo Song(A&M) 1.Phase transition,
1 Heavy quark system near Tc Su Houng Lee In collaboration with Kenji Morita Also, thanks to group members: Present: T. Song, K.I. Kim, W.S. Park, H. Park,
Quarkonia spectral functions at zero and finite temperature Péter Petreczky Nuclear Theory Group and RIKEN-BNL Brookhaven National Laboratory Based on.
ANALYSES OF D s * DK (B s * BK) VERTICES J. Y. Süngü, Collaborators: K. Azizi * and H. Sundu 2 nd International Conference on Particle Physics in Memoriam.
1 Properties of Quarkonia at T c Su Houng Lee In collaboration with Kenji Morita.
Quarkonium at finite Temperature from QCD Sum Rules and the Maximum Entropy Method Seminar at the Komaba Nuclear Theory Tokyo University
Charmonia at finite temperature: an approach based on QCD sum rules and the maximum entropy method “Future Prospects of Hadron Physics at J-PARC and Large.
ATHIC 2008, Tsukuba Kenji Morita, Yonsei University Charmonium dissociation temperatures from QCD sum rules Kenji Morita Institute of Physics and Applied.
Recent results from QCD sum rule analyses based on the maximum entropy method International Symposium on Chiral Symmetry in Hadrons and
Exact vector channel sum rules at finite temperature Talk at the ECT* workshop “Advances in transport and response properties of strongly interacting systems”
Nature of f 0 (1370), f 0 (1500) and f 0 (1710) within the eLSM Stanislaus Janowski in collaboration with F. Giacosa, D. Parganlija and D. H. Rischke Stanislaus.
Recent developments in lattice QCD Péter Petreczky
Vector and axial-vector mesons in nuclear matter – recent results
Spatial charmonium correlators and spectral functions
Heavy quark potentials and spectral functions Péter Petreczky
Lattice QCD at finite temperature Péter Petreczky
Thermal modification of bottomonium spectral functions from QCD sum rules with the maximum entropy method Kei Suzuki (Tokyo Institute of Technology)
Quarkonia at finite temperature: lattice results Peter Petreczky
A novel probe of Chiral restoration in nuclear medium
Modifications of meson spectral functions in nuclear matter
Extending the Linear Sigma Model to Nf = 3
QCD condensates and phi meson spectral moments in nuclear matter
Mesons in medium and QCD sum rule with dim 6 operators
Scalar Meson σ(600) in the QCD Sum Rule
The φ meson in nuclear matter and the strangeness content of the nucleon Philipp Gubler, JAEA P. Gubler and K. Ohtani, Phys. Rev. D 90, (2014).
Charm2010 4TH International Workshop on Charm Physics
R.R. Silva, M.E. Bracco, S.H. Lee, M. Nielsen
Overview of Potential models at finite temperature Péter Petreczky
有限密度・ 温度におけるハドロンの性質の変化
The Operator Product Expansion Beyond Perturbation Theory in QCD
Exact vector channel sum rules at finite temperature
Lattice QCD study of charmonium dissociation temperatures
Towards Understanding the In-medium φ Meson with Finite Momentum
Quarkonium states at finite temperature
QCD sum rules for quarkonium at T>0
Quarkonium Correlators
Quarkonia at finite T from QCD sum rules and MEM
The phi meson at finite density from a QCD sum rules + MEM approach
QCD和則とMEMを用いた有限密度中のvector mesonの研究の現状と最近の発展
P. Gubler and M. Oka, Prog. Theor. Phys. 124, 995 (2010).
Theory on Hadrons in nuclear medium
Presentation transcript:

A Bayesian Approach to QCD Sum Rules arXiv: 1005.2459 [hep-ph] (to be published in PTP) ストレンジネス核物理2010 KEK 4.12.2010 Philipp Gubler (TokyoTech) Collaborators: Makoto Oka (TokyoTech), Kenji Morita (GSI)

Contents QCD Sum Rules and the Maximum Entropy Method Test of the method in the case of the ρmeson channel First results of the analysis of charmonium at finite temperature Conclusions and outlook

QCD sum rules M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147, 385 (1979); B147, 448 (1979). In this method the properties of the two point correlation function is fully exploited: is calculated “perturbatively”, using OPE spectral function of the operator χ After the Borel transformation:

The basic problem to be solved given ? “Kernel” (but only incomplete and with error) This is an ill-posed problem. But, one may have additional information on ρ(ω), which can help to constrain the problem: - Positivity: - Asymptotic values:

The usual approach s ρ(s) The spectral function is usually assumed to be describable by a “pole + continuum” form (ground state + excited states): This very crude ansatz often works surprisingly well, but… This ansatz may not always be appropriate. The dependence of the physical results on sth is often quite large.

The Maximum Entropy Method → Bayes’ Theorem likelihood function prior probability (Shannon-Jaynes entropy) Corresponds to ordinary χ2-fitting. “default model” M. Jarrel and J.E. Gubernatis, Phys. Rep. 269, 133 (1996). M.Asakawa, T.Hatsuda and Y.Nakahara, Prog. Part. Nucl. Phys. 46, 459 (2001).

A first test case: the ρmeson channel One of the first and most successful application of QCD sum rules was the analysis of the ρ meson channel. The “pole + continuum” assumption works well in this case. Adapted from: Y. Kwon, M. Procura, and W. Weise, Phys. Rev. C 78, 055203 (2008). e+e- → nπ (n: even) The experimental knowledge of the spectral function allows us generate realistic mock data.

OPE data: We use three parameter sets in our analysis: (from the Gell-Mann-Oakes-Renner relation)

Results: Experiment: mρ= 0.77 GeV Fρ= 0.141 GeV The position and residue of the ρ-meson are reproduced, but not its width.

Application to charmonium (J/ψ) at finite temperature (in collaboration with M.Oka and K. Morita) - Prediction of “J/ψ Suppression by Quark-Gluon Plasma Formation” T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986). … - During the last 10 years, a picture has emerged from studies using lattice QCD (and MEM), where J/ψ survives above TC. (schematic) M. Asakawa and T. Hatsuda, Phys. Rev. Lett. 92 012001 (2004). S. Datta et al, Phys. Rev. D69, 094507 (2004). T. Umeda et al, Eur. Phys. J. C39S1, 9 (2005). … taken from H. Satz, Nucl.Part.Phys. 32, 25 (2006).

The charmonium sum rules at T=0 We analyze two different sum rules: Moment sum rules Borel sum rules Developed and analyzed in: M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147, 385 (1979); B147, 448 (1979). L.J. Reinders, H.R. Rubinstein and S. Yazaki, Nucl. Phys. B 186, 109 (1981). R.A. Bertlmann, Nucl. Phys. B 204, 387 (1982).

- The J/ψ peak is obtained at the correct value. Analysis at T=0 Moment sum rules Borel sum rules (Moments n=5~14 are used) mJ/ψ=3.19 GeV mJ/ψ=3.11 GeV - The J/ψ peak is obtained at the correct value. - We also get a (nonsignificant) second peak. → Excited states? → MEM artifact?

The charmonium sum rules at finite T The application of QCD sum rules has been developed in: T.Hatsuda, Y.Koike and S.H. Lee, Nucl. Phys. B 394, 221 (1993). depend on T A non-scalar twist-2 gluon condensates appears due to the non-existence of Lorentz invariance at finite temperature: four-velocity of the medium

The T-dependence of the condensates The energy-momentum tensor is considered: After matching the trace part and the traceless part, one gets: obtained from lattice QCD These values are obtained from quenched lattice calculations: G. Boyd et al, Nucl. Phys. B 469, 419 (1996). taken from: O. Kaczmarek et al, Phys. Rev. D 70, 074505 (2004). K. Morita and S.H. Lee, arXiv:0908.2856 [hep-ph]. K. Morita and S.H. Lee, Phys. Rev. Lett. 100, 022301 (2008). K. Morita and S.H. Lee, Phys. Rev. C. 77, 064904 (2008).

The charmonium spectral function at finite T Moment sum rules (Moments n=5~14 are used) preliminary melting of J/ψ!

The charmonium spectral function at finite T Borel sum rules preliminary melting of J/ψ!

Conclusions We have shown that MEM can be applied to QCD sum rules The “pole + continuum” ansatz is not a necessity We could observe the melting of J/ψ using finite temperature QCD sum rules and MEM J/ψ seems to melt between T ~ 1.2 TC and T ~ 1.4 TC,, which is below the values obtained in lattice QCD

Outlook (Possible further applications) Baryonic channels (with K.Ohtani) Behavior of other hadrons at finite temperature or density Tetraquarks Pentaquarks scattering states ↔ resonances ?