Galaxy formation from the IIB Superstring with Fluxes Tonatiuh Matos http:/www.fis.cinvestav.mx/~tmatos
Problems with the CDM Model Dark Energy: Extreme fine tuning for Coincidence Dark Matter: Cuspy central density profiles Too much substructure Too late galaxy formation Too early metalicity formation Etc.
Some Alternatives Scalar Field Dark Matter Self-Interacting DM Warm DM Super Heavy DM Self-Annihilating DM Repulsive DM Fuzzy DM Decaying DM Scalar Field Dark Matter V = V0 (cosh()-1)
Cosmology from Superstrings Theory R. Kallosh R. Brandenberger D. Wands, etc.
Cosmology from Superstrings Theory R. Kallosh R. Brandenberger
IIB Superstrings theory with Fluxes Phys.Rev.D67:046006,2003 Type IIB Superstrings With Fluxes
Bose-Einstein Condensate + dV/d = 0 V = V0[cosh() – 1]
Bose-Einstein Condensates Tc TeV m < 10-17 eV Mcrit 0.1 M2Planck /m
M 0.1 M2Planck /m If m 10-23 eV M 1012 Mo Scalar Field Fluctuation = Halo Tonatiuh Matos and F. Siddhartha Guzman Class. Q. Grav. 17(2000)L9; Tonatiuh Matos, F. Siddhartha Guzman and Dario Nuñez, Phys. Rev. D62(2000)061301(R); Tonatiuh Matos and F. Siddhartha Guzman, Class.Q. Grav. 18(2001)5055 M 0.1 M2Planck /m If m 10-23 eV M 1012 Mo
The Model T. Matos, R. Luevano, H. H. Garcia Compean. Inflation hin exp() F2 V = V0[cosh() – 1] +Axion
u
Omegas
Omegas exp() zoom
Direct Proof of DM (Chandra)
Density Profiles
Density Profiles LSB Galaxies
Density Profiles LSB Galaxies
Summarizing The IIB Superstring model: Behaves as CDM after recombination. Reproduces all the successes CDM above galactic scales. Predicts a sharp cut-off in the mass power spectrum The favored values for the two free parameters 20 V0 (310-27 Mpl )4 m 10-23 eV
The differences between IIB superstrings and CDM: Conclusions The differences between IIB superstrings and CDM: 1) Recombination 2) Center of the Galaxies
Conclusion The Dilaton could be a good candidate to be the Dark Matter of the Universe