Methylindoles – Microwave Spectroscopy

Slides:



Advertisements
Similar presentations
David Wilcox Purdue University Department of Chemistry 560 Oval Dr. West Lafayette, IN
Advertisements

High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Submillimeter-wave Spectroscopy of [HCOOCH 3 ] and [H 13 COOCH 3 ] in the Torsional Excited States Atsuko Maeda, Frank C. De Lucia, and Eric Herbst Department.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
Galen Sedo, Jane Curtis, Kenneth R. Leopold Department of Chemistry, University of Minnesota The Dipole Moment of the Sulfuric Acid Monomer.
Maria Eugenia Sanz, Carlos Cabezas, Santiago Mata, José L. Alonso The Rotational Spectrum of Tryptophan.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Electronic Spectroscopy of DHPH Revisited: Potential Energy Surfaces along Different Low Frequency Coordinates Leonardo Alvarez-Valtierra and David W.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
RANIL M. GURUSINGHE, MICHAEL TUBERGEN Department of Chemistry and Biochemistry, Kent State University, Kent, OH. RANIL M. GURUSINGHE, MICHAEL TUBERGEN.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
Rotational Spectroscopic Investigations Of CH 4 ---H 2 S Complex Aiswarya Lakshmi P. and E. Arunan Inorganic and Physical Chemistry Indian Institute of.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
High Resolution Electronic Spectroscopy of 9-Fluorenemethanol (9FM) in the Gas Phase Diane M. Mitchell, James A.J. Fitzpatrick and David W. Pratt Department.
Microwave and Ab Initio Investigations of CHCl 2 F-OCS and Related Hydrochlorofluorocarbon Complexes Rebecca A. Peebles and Amanda L. Steber Department.
Rotational transitions in the and vibrational states of cis-HCOOH 7 9 Oleg I. Baskakov Department of Quantum Radiophysics, Kharkov National University.
OSU – June – SGK1 ADAM DALY, STEVE KUKOLICH, Dept. of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona CHAKREE TANJAROON,
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Optical Frequency Comb Referenced Sub-Doppler Resolution Difference-Frequency-Generation Infrared Spectroscopy K. Iwakuni, S. Okubo, H. Nakayama, and H.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
The microwave spectroscopy study of 1,2-dimethoxyethane
Juliane Heitkämper, John C Mullaney, Nick Walker
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
High-Resolution Infrared Spectrum of the  1 band of 5-C5H5NiNO
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
Stéphane Bailleux University of Lille
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
Aimee Bell, Omar Mahassneh, James Singer,
M. Rezaei, J. George, L. Welbanks, and N. Moazzen-Ahmadi
Rotational Spectra of Adducts of Pyridine with Methane and Its Halides
Mahin Afshari, M. Dehghany, Jalal N. Oliaee, N. Moazzen-Ahmadi
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Microwave spectra of 1- and 2-bromobutane
Jinjun Liu, Ming-Wei Chen, John T. Yi,
Methylstyrenes – Microwave Spectroscopy
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
Stéphane Bailleux Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation.
Ultraviolet Cavity Ringdown Spectra of 2-Cyclohexen-1-one and its Inversion Potential Energy Function Mohamed Rishard, Emily Giles, Jaeboom Choo, Daniel.
MICROWAVE SPECTRA FOR THE THREE 13C1 ISOTOPOLOGUES OF PROPENE AND NEW ROTATIONAL CONSTANTS FOR PROPENE AND ITS 13C1 ISOTOPOLOGUES NORMAN C. CRAIG, Department.
Ashley M. Anderton, Cori L. Christenholz, Rachel E. Dorris, Rebecca A
Fourier Transform Emission Spectroscopy of CoH and CoD
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
The torsional spectrum of doubly deuterated methanol CHD2OH
Michal M. Serafin, Sean A. Peebles
Experimental Measurement of the Induced Dipole Moment of an Isolated Molecule in Its Ground and Electronically Excited States. Indole and Indole-H2O.*
The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Presentation transcript:

Methylindoles – Microwave Spectroscopy 1-7 methyl substituted Indoles What can we learn about the electronic environment of the methylindoles using internal rotation and quadrupole coupling? Continuation of previous work, presented at ISMS 2014 – RJ03 MW spectroscopy of 1-,2-,3- and 5-methylindoles RANIL M. GURUSINGHE, MICHAEL TUBERGEN Department of Chemistry, Kent State University, Ohio

Methods Methylindoles – Microwave Spectroscopic Study Recorded and assigned the rotational spectra of 1-7 methylindoles Determined 14N quadrupole coupling constants (χaa, χbb, χcc) Determined the potential barriers to methyl internal-rotation (V3) Computational calculations at MP2 and DFT level: rotational constants potential barriers Compared the χaa, χbb, χcc, and V3 Fabry–Pérot cavity based FT-Microwave Spectrometer at Kent State University 7.5” diameter mirrors . 10.5 – 21 GHz 2.4 kHz resolution Doppler splitting . 13 kHz FWHM of each component Reservoir nozzle . Can be heated up to 200 °C Methylindoles – Microwave Spectroscopic Study

Methylindoles – Microwave Spectroscopic Study MW Spectra First MW spectroscopic investigation on 1-7 methylindoles methyl internal rotation splitting 14N quadrupole splitting Methylindoles – Microwave Spectroscopic Study

Methylindoles – Microwave Spectroscopic Study V3 Barrier parameter 1-MI 2-MI 3-MI 4-MI 5-MI 6-MI 7-MI A/MHz 2651.1270(15) 3790.6183(13) 2603.724(4) 2164.6596(6) 3459.1966(5) 3416.4461(9) 2141.0265(13) B/MHz 1305.2571(7) 990.2520(3) 1268.785(2) 1484.9238(4) 1033.90925(12) 1042.1315(2) 1515.2908(11) C/MHz 879.7833(4) 789.2286(2) 857.8098(2) 885.77636(9) 800.17230(5) 802.74921(9) 892.44164(7) Pcc/u Å2 1.690 1.666 1.633 1.629 1.656 1.638 ΔJ/kHz 0.041(4) 0.0105(15) 0.048(2) 0.0409(11) 0.0145(5) 0.0035(7) 0.043(3) ΔJK/kHz -0.06(2) 0.02(2) -0.072(7) fixed 0.00 0.030(6) -0.020(8) δJ/kHz 0.013(2) 0.0012(11) 0.0156(7) 0.0158(7) 0.0037(2) 0.0172(9) δK/kHz 0.11(3) 0.117(11) 0.053(6) 0.044(13) -0.34(3) 0.042(9) Dpi2J/MHz 0.048(4) 0.17(6) 0.056(5) -0.0085(2) -0.0095(4) 0.17(4) Dpi2K/MHz -0.15(7) -0.5(2) -0.097(12) 0.399(4) 0.397(6) -0.29(6) Dpi2-/MHz 0.021(5) 0.040(5) -0.0062(2) -0.0062(5) 0.16(4) χaa/MHz 1.730(9) 1.74(5) 1.783(5) 1.699(5) 1.728(4) 1.707(15) 1.698(5) χbb-χcc/MHz 5.455(10) 5.25(3) 5.209(5) 4.993(8) 5.056(3) 5.066(9) 4.935(5) V3/cm-1 277.1(2) 374.32(4) 414.(5) 331.6(2) 126.8675(15) 121.413(4) 426(3) ∠(i,a)/º 50.39(13) 54.(2) 65.29(7) 16.671(6) 18.118(9) 71.3(6) ∠(i,b)/º 39.61(13) fixed 90.00 35.(2) 24.71(7) 73.328(6) 71.882(9) 18.7(6) No. A lines 80 79 86 95 63 83 No. E lines 72 74 75 88 57 87 Δνrms/kHz 7.2 2.8 1.9 1.4 2.1 2.3 a-including the hyperfine components Methylindoles – Microwave Spectroscopic Study

Quality of the XIAM Fits parameter 1-MI 2-MI 3-MI 4-MI 5-MI 6-MI 7-MI A/MHz 2651.1270(15) 3790.6183(13) 2603.724(4) 2164.6596(6) 3459.1966(5) 3416.4461(9) 2141.0265(13) B/MHz 1305.2571(7) 990.2520(3) 1268.785(2) 1484.9238(4) 1033.90925(12) 1042.1315(2) 1515.2908(11) C/MHz 879.7833(4) 789.2286(2) 857.8098(2) 885.77636(9) 800.17230(5) 802.74921(9) 892.44164(7) Pcc/u Å2 1.690 1.666 1.633 1.629 1.656 1.638 ΔJ/kHz 0.041(4) 0.0105(15) 0.048(2) 0.0409(11) 0.0145(5) 0.0035(7) 0.043(3) ΔJK/kHz -0.06(2) 0.02(2) -0.072(7) fixed 0.00 0.030(6) -0.020(8) δJ/kHz 0.013(2) 0.0012(11) 0.0156(7) 0.0158(7) 0.0037(2) 0.0172(9) δK/kHz 0.11(3) 0.117(11) 0.053(6) 0.044(13) -0.34(3) 0.042(9) Dpi2J/MHz 0.048(4) 0.17(6) 0.056(5) -0.0085(2) -0.0095(4) 0.17(4) Dpi2K/MHz -0.15(7) -0.5(2) -0.097(12) 0.399(4) 0.397(6) -0.29(6) Dpi2-/MHz 0.021(5) 0.040(5) -0.0062(2) -0.0062(5) 0.16(4) χaa/MHz 1.730(9) 1.74(5) 1.783(5) 1.699(5) 1.728(4) 1.707(15) 1.698(5) χbb-χcc/MHz 5.455(10) 5.25(3) 5.209(5) 4.993(8) 5.056(3) 5.066(9) 4.935(5) V3/cm-1 277.1(2) 374.32(4) 414.(5) 331.6(2) 126.8675(15) 121.413(4) 426(3) ∠(i,a)/º 50.39(13) 54.(2) 65.29(7) 16.671(6) 18.118(9) 71.3(6) ∠(i,b)/º 39.61(13) fixed 90.00 35.(2) 24.71(7) 73.328(6) 71.882(9) 18.7(6) No. A lines 80 79 86 95 63 83 No. E lines 72 74 75 88 57 87 Δνrms/kHz 7.2 2.8 1.9 1.4 2.1 2.3 a-including the hyperfine components Methylindoles – Microwave Spectroscopic Study

Quality of the XIAM Fits parameter 1-MI 2-MI 3-MI 4-MI 5-MI 6-MI 7-MI A/MHz 2651.1270(15) 3790.6183(13) 2603.724(4) 2164.6596(6) 3459.1966(5) 3416.4461(9) 2141.0265(13) B/MHz 1305.2571(7) 990.2520(3) 1268.785(2) 1484.9238(4) 1033.90925(12) 1042.1315(2) 1515.2908(11) C/MHz 879.7833(4) 789.2286(2) 857.8098(2) 885.77636(9) 800.17230(5) 802.74921(9) 892.44164(7) Pcc/u Å2 1.690 1.666 1.633 1.629 1.656 1.638 ΔJ/kHz 0.041(4) 0.0105(15) 0.048(2) 0.0409(11) 0.0145(5) 0.0035(7) 0.043(3) ΔJK/kHz -0.06(2) 0.02(2) -0.072(7) fixed 0.00 0.030(6) -0.020(8) δJ/kHz 0.013(2) 0.0012(11) 0.0156(7) 0.0158(7) 0.0037(2) 0.0172(9) δK/kHz 0.11(3) 0.117(11) 0.053(6) 0.044(13) -0.34(3) 0.042(9) Dpi2J/MHz 0.048(4) 0.17(6) 0.056(5) -0.0085(2) -0.0095(4) 0.17(4) Dpi2K/MHz -0.15(7) -0.5(2) -0.097(12) 0.399(4) 0.397(6) -0.29(6) Dpi2-/MHz 0.021(5) 0.040(5) -0.0062(2) -0.0062(5) 0.16(4) χaa/MHz 1.730(9) 1.74(5) 1.783(5) 1.699(5) 1.728(4) 1.707(15) 1.698(5) χbb-χcc/MHz 5.455(10) 5.25(3) 5.209(5) 4.993(8) 5.056(3) 5.066(9) 4.935(5) V3/cm-1 277.1(2) 374.32(4) 414.(5) 331.6(2) 126.8675(15) 121.413(4) 426(3) ∠(i,a)/º 50.39(13) 54.(2) 65.29(7) 16.671(6) 18.118(9) 71.3(6) ∠(i,b)/º 39.61(13) fixed 90.00 35.(2) 24.71(7) 73.328(6) 71.882(9) 18.7(6) No. A lines 80 79 86 95 63 83 No. E lines 72 74 75 88 57 87 Δνrms/kHz 7.2 2.8 1.9 1.4 2.1 2.3 a-including the hyperfine components Methylindoles – Microwave Spectroscopic Study

Theoretical Calculations Electrostatic potential mapped onto a 0.20 a.u. electron density isosurface for the optimized structures, calculated at MP2/6-311++G(d,p) level 1-methylindole 2-methylindole 3-methylindole 2 measurable dipole moment rotor length? 4-methylindole 5-methylindole 6-methylindole 7-methylindole Methylindoles – Microwave Spectroscopic Study

Structure from Rotational Constants parameter 1-MI 2-MI 3-MI 4-MI 5-MI 6-MI 7-MI A/MHz 2651.1270(15) 3790.6183(13) 2603.724(4) 2164.6596(6) 3459.1966(5) 3416.4461(9) 2141.0265(13) B/MHz 1305.2571(7) 990.2520(3) 1268.785(2) 1484.9238(4) 1033.90925(12) 1042.1315(2) 1515.2908(11) C/MHz 879.7833(4) 789.2286(2) 857.8098(2) 885.77636(9) 800.17230(5) 802.74921(9) 892.44164(7) Pcc/u Å2 1.690 1.666 1.633 1.629 1.656 1.638 ΔJ/kHz 0.041(4) 0.0105(15) 0.048(2) 0.0409(11) 0.0145(5) 0.0035(7) 0.043(3) ΔJK/kHz -0.06(2) 0.02(2) -0.072(7) fixed 0.00 0.030(6) -0.020(8) δJ/kHz 0.013(2) 0.0012(11) 0.0156(7) 0.0158(7) 0.0037(2) 0.0172(9) δK/kHz 0.11(3) 0.117(11) 0.053(6) 0.044(13) -0.34(3) 0.042(9) Dpi2J/MHz 0.048(4) 0.17(6) 0.056(5) -0.0085(2) -0.0095(4) 0.17(4) Dpi2K/MHz -0.15(7) -0.5(2) -0.097(12) 0.399(4) 0.397(6) -0.29(6) Dpi2-/MHz 0.021(5) 0.040(5) -0.0062(2) -0.0062(5) 0.16(4) χaa/MHz 1.730(9) 1.74(5) 1.783(5) 1.699(5) 1.728(4) 1.707(15) 1.698(5) χbb-χcc/MHz 5.455(10) 5.25(3) 5.209(5) 4.993(8) 5.056(3) 5.066(9) 4.935(5) V3/cm-1 277.1(2) 374.32(4) 414.(5) 331.6(2) 126.8675(15) 121.413(4) 426(3) ∠(i,a)/º 50.39(13) 54.(2) 65.29(7) 16.671(6) 18.118(9) 71.3(6) ∠(i,b)/º 39.61(13) fixed 90.00 35.(2) 24.71(7) 73.328(6) 71.882(9) 18.7(6) No. A linesa 80 79 86 95 63 83 No. E linesa 72 74 75 88 57 87 Δνrms/kHz 7.2 2.8 1.9 1.4 2.1 2.3 ΔIrms/u Å2 1.628 2.269 1.947 1.677 2.029 2.159 1.719 Methylindoles – Microwave Spectroscopic Study

Methylindoles – Microwave Spectroscopic Study Quadrupole Analysis parameter Indolea 1-MI 2-MI 3-MI 4-MI 5-MI 6-MI 7-MI χaa/MHz 1.726 1.730(9) 1.74(5) 1.783(5) 1.699(5) 1.728(4) 1.707(15) 1.698(5) χbb-χcc/MHz 5.031 5.455(10) 5.25(3) 5.209(5) 4.993(8) 5.056(3) 5.066(9) 4.935(5) θ/ degrees 18.1 38.0 19.2 4.1 41.6 29.6 5.9 3.5 χcc / MHz -3.379 -3.593 (13) -3.50 (6) -3.496 (7) -3.346 (9) -3.392 (5) -3.39 (2) -3.317 (7) χparallel / MHz 1.644 2.1 (2) 1.757 (1) 1.713 (1) - 1.634 (1) 1.679 (1) 1.618 (2) χperpen / MHz 1.735 1.5 (2) 1.738 (1) 1.783 (1) 1.758 (1) 1.707 (1) 1.698 (1) iσ (N-H) 0.24 0.32 (4) 0.25 (1) 0.24 (1) 0.23 (1) πc (Pz) 0.38 0.32 (2) 0.36 (1) 0.38 (1) 0.37 (1) 0.39 (1) c- (N) 0.36 0.50 (6) 0.35 (1) a Suenram, R. D.; Lovas, F. J.; Fraser, G. T. Microwave Spectrum and 14N Quadrupole Coupling Constants of Indole. J. Mol. Spectrosc. 1998, 127, 472-480. Methylindoles – Microwave Spectroscopic Study

Methylindoles – Microwave Spectroscopic Study Quadrupole Analysis parameter Indolea 1-MI 2-MI 3-MI 4-MI 5-MI 6-MI 7-MI χaa/MHz 1.726 1.730(9) 1.74(5) 1.783(5) 1.699(5) 1.728(4) 1.707(15) 1.698(5) χbb-χcc/MHz 5.031 5.455(10) 5.25(3) 5.209(5) 4.993(8) 5.056(3) 5.066(9) 4.935(5) θ/ degrees 18.1 38.0 19.2 4.1 41.6 29.6 5.9 3.5 χcc / MHz -3.379 -3.593 (13) -3.50 (6) -3.496 (7) -3.346 (9) -3.392 (5) -3.39 (2) -3.317 (7) χparallel / MHz 1.644 2.1 (2) 1.757 (1) 1.713 (1) - 1.634 (1) 1.679 (1) 1.618 (2) χperpen / MHz 1.735 1.5 (2) 1.738 (1) 1.783 (1) 1.758 (1) 1.707 (1) 1.698 (1) iσ (N-H) 0.24 0.32 (4) 0.25 (1) 0.24 (1) 0.23 (1) πc (Pz) 0.38 0.32 (2) 0.36 (1) 0.38 (1) 0.37 (1) 0.39 (1) c- (N) 0.36 0.50 (6) 0.35 (1) a Suenram, R. D.; Lovas, F. J.; Fraser, G. T. Microwave Spectrum and 14N Quadrupole Coupling Constants of Indole. J. Mol. Spectrosc. 1998, 127, 472-480. Methylindoles – Microwave Spectroscopic Study

Barrier to Methyl Internal Rotation molecule this work fitted barrier this work theoretical barrier ωB97XD/6-311++G(d,p) Sinha et al.5 B3LYP/6-31G(d,p) other experimental works V3 (cm-1) V6 (cm-1) 1-MI 277.1(2) 281.5 -28.6 274 282.8a 2-MI 374.32(4) 359.2 -26.5 348 - 3-MI 414.(5) 409.2 -25.8 419 443.2b, 500(40)c 4-MI 331.6(2) 338.0 -22.4 335 5-MI 126.8675(15) 125.1 -10.4 109 132.7a, 135(6)c 6-MI 121.413(4) 127.1 -12.9 104 123.1a 7-MI 426(3) 436.7 -32.3 418 a Bickel, G. A.; Leach, G. W.; Demmer, D. R.; Hager, J. W.; Wallace, S. C. The Torsional Spectra of Jet‐Cooled Methyl Substituted Indoles in the Ground and First Excited States. J. Chem. Phys. 1987, 88, 1-8. b Sammeth, D. M.; Siewert, S. S.; Callis, P. R.; Spangler, L. H. Methyl Rotor Effects in 3- and 5-Methylindole. J. Phys. Chem. 1992, 96, 5771-5778. c Remmers, K.; Jalviste, E.; Mistrik, I.; Berden, G.; Meerts, W. L. Internal Rotation Effects in the Rotationally Resolved S1(1Lb) ← S0 Origin Bands of 3-Methylindole and 5-Methylindole. J. Chem. Phys. 1998, 108, 8436-8445. Methylindole Electronic Environment – Microwave Spectroscopic Study

Barrier Forming Factors NBO analysis – Sinha, R. K.; Singh, B. P.; Kundu, T. Origin of Threefold Methyl Torsional Potential in Methylindoles. Theor. Chem. Acc. 2008, 121, 59-70. 1-MI non-local hyperconjugative interactions 2-MI, 3-MI local hyperconjugative interactions 4-MI, 5-MI, 6-MI, 7-MI local structural distortions Methylindoles – Microwave Spectroscopic Study

Methylindoles – Microwave Spectroscopic Study Acknowledgement Prof. Heinrich Maeder Prof. Sean Peebles Prof. Rebecca Peebles Ohio Supercomputer Center Kent State University Methylindoles – Microwave Spectroscopic Study

Theoretical Calculations parameter 1-MI 2-MI 3-MI 4-MI 5-MI 6-MI 7-MI A/MHza 2635.3 3722.2 2592.3 2154.4 3444.3 3400.9 2130.0 B/MHza 1301.8 985.8 1263.1 1479.6 1029.6 1037.5 1510.0 C/MHza 876.2 785.4 853.9 882.1 796.6 799.0 888.6 μa/Da 2.23 2.20 -0.93 1.82 1.41 -0.65 0.51 μb/Da -1.04 -1.45 1.72 0.39 1.17 -1.81 -2.27 μc/Da 0.00 0.09 0.12 0.04 0.10 V3/cm-1 b 281.5 359.2 409.6 338.0 125.1 127.1 436.7 V6/cm-1 b -28.6 -26.5 -25.8 -22.4 -10.4 -12.9 -32.3 rotor length/Åa 1.449 1.494 1.498 1.506 1.511 1.510 1.505 Methylindoles – Microwave Spectroscopic Study