Introduction to Scientific Computing II

Slides:



Advertisements
Similar presentations
Practical Course SC & V Free Boundary Value Problems Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Advertisements

CSE Seminar Benefits of Hierarchy and Adaptivity Preliminary Discussion Dr. Michael Bader / Dr. Miriam Mehl Institut für Informatik Scientific Computing.
Institut für Informatik Scientific Computing in Computer Science Practical Course SC & V Time Discretisation Dr. Miriam Mehl.
CSCI-455/552 Introduction to High Performance Computing Lecture 25.
Scientific Computing Lab Results Worksheet 3 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
CSCI-455/552 Introduction to High Performance Computing Lecture 26.
Rayan Alsemmeri Amseena Mansoor. LINEAR SYSTEMS Jacobi method is used to solve linear systems of the form Ax=b, where A is the square and invertible.
Numerical Algorithms • Matrix multiplication
1 Systems of Linear Equations Iterative Methods. 2 B. Iterative Methods 1.Jacobi method and Gauss Seidel 2.Relaxation method for iterative methods.
ECE669 L5: Grid Computations February 12, 2004 ECE 669 Parallel Computer Architecture Lecture 5 Grid Computations.
1 Systems of Linear Equations Iterative Methods. 2 B. Direct Methods 1.Jacobi method and Gauss Seidel 2.Relaxation method for iterative methods.
Iterative Methods for Solving Linear Systems of Equations ( part of the course given for the 2 nd grade at BGU, ME )
1 Numerical Integration of Partial Differential Equations (PDEs)
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Introduction to Scientific Computing II Molecular Dynamics – Introduction Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Hans De Sterck Department of Applied Mathematics University of Colorado at Boulder Ulrike Meier Yang Center for Applied Scientific Computing Lawrence Livermore.
Introduction to Scientific Computing II From Gaussian Elimination to Multigrid – A Recapitulation Dr. Miriam Mehl.
1 Computational Methods II (Elliptic) Dr. Farzad Ismail School of Aerospace and Mechanical Engineering Universiti Sains Malaysia Nibong Tebal Pulau.
Introduction to Scientific Computing II Overview Michael Bader.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Introduction to Scientific Computing II Multigrid Dr. Miriam Mehl.
Introduction to Scientific Computing II
Introduction to Scientific Computing II Molecular Dynamics – Algorithms Dr. Miriam Mehl Institut für Informatik Scientific Computing In Computer Science.
Scientific Computing Lab Outlook / State of Research Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
9 Nov B - Introduction to Scientific Computing1 Sparse Systems and Iterative Methods Paul Heckbert Computer Science Department Carnegie Mellon.
Scientific Computing Lab Results Worksheet 4 Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Lab Course CFD Introduction Dr. Miriam Mehl Institut für Informatik Schwerpunkt Wissenschaftliches Rechnen.
Scientific Computing Lab Organization Dr. Miriam Mehl Institut für Informatik Scientific Computing in Computer Science.
Numerical Algorithms Chapter 11.
Iterative Solution Methods
Part 3 Chapter 12 Iterative Methods
Scientific Computing Lab
Solving Systems of Linear Equations: Iterative Methods
بسم الله الرحمن الرحيم.
Scientific Computing Lab
MultiGrid.
Iterative Methods Good for sparse matrices Jacobi Iteration
Introduction to Multigrid Method
Introduction to Scientific Computing II
Pressure Poisson Equation
Scientific Computing Lab
Numerical Algorithms • Parallelizing matrix multiplication
Introduction to Scientific Computing II
Matrix Methods Summary
Introduction to Scientific Computing II
Stencil Quiz questions
CS 252 Project Presentation
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Stencil Quiz questions
Scientific Computing Lab
Numerical Analysis Lecture13.
Scientific Computing Lab
Numerical Linear Algebra
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Introduction to Scientific Computing II
Numerical Methods on Partial Differential Equation
Scientific Computing Lab
Stencil Pattern ITCS 4/5145 Parallel computing, UNC-Charlotte, B. Wilkinson Oct 14, 2014 slides6b.ppt 1.
Spatial Discretisation
Stencil Pattern ITCS 4/5145 Parallel computing, UNC-Charlotte, B. Wilkinson StencilPattern.ppt Oct 14,
Linear Algebra Lecture 16.
Presentation transcript:

Introduction to Scientific Computing II Institut für Informatik Scientific Computing In Computer Science Introduction to Scientific Computing II Relaxation Methods Dr. Miriam Mehl

Gauss-Seidel – Convergence twice as fast as Jacobi (in our case!!!) number of iterations: O(1/h)2

Jacobi/GS – Costs per Iteration A sparse O(1) nonzero entries per line O(1/h)2 operations in 2D O(1/h)3 operations in 3D

Jacobi/GS – Costs number of iterations O(1/h)2 (both 2D and 3D) costs per iteration O(1/h)2 in 2D O(1/h)3 in 3D total O(1/h)4 or O(1/h)5

Implementational Aspects Gauss-Seidel: no memory overhead sequential Jacobi: memory overhead parallel Red-Black GS

Successive Overrelaxation (SOR) start from Gauss-Seidel introduce w:

Successive Overrelaxation (SOR) optimal w: convergence?

SOR – Convergence worse for small h number of iterations: O(1/h)

SOR – Costs number of iterations O(1/h)2 (both 2D and 3D) costs per iteration O(1/h)2 in 2D O(1/h)3 in 3D total O(1/h)4 or O(1/h)5

Towards Multigrid optimal costs O(1/h)2 or O(1/h)3 Gauss-Seidel: reduction of different frequencies multigrid idea: high frequencies => fine grids low frequencies => coarse grids