Boyce/DiPrima 9th ed, Ch 3.6: Variation of Parameters Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce.

Slides:



Advertisements
Similar presentations
Section 3.6: Nonhomogeneous 2 nd Order D.E.s Method of Undetermined Coefficients Christopher Bullard MTH /12/2006.
Advertisements

Boyce/DiPrima 9th ed, Ch 2.4: Differences Between Linear and Nonlinear Equations Elementary Differential Equations and Boundary Value Problems, 9th edition,
Ch 3.2: Solutions of Linear Homogeneous Equations; Wronskian
Boyce/DiPrima 9th ed, Ch 2.8: The Existence and Uniqueness Theorem Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
Ch 3.6: Variation of Parameters
Boyce/DiPrima 9th ed, Ch 3.5: Nonhomogeneous Equations;Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 10.1: Two-Point Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Ch 3.5: Nonhomogeneous Equations; Method of Undetermined Coefficients
Ch 7.9: Nonhomogeneous Linear Systems
Boyce/DiPrima 9th ed, Ch 11.2: Sturm-Liouville Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 10th ed, Ch 10.2: Fourier Series Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and Richard.
Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition,
Boyce/DiPrima 9 th ed, Ch 3.1: 2 nd Order Linear Homogeneous Equations-Constant Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 3.4: Repeated Roots; Reduction of Order Elementary Differential Equations and Boundary Value Problems, 9th edition, by William.
Boyce/DiPrima 9th ed, Ch 8.4: Multistep Methods Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce and Richard.
Math 3120 Differential Equations with Boundary Value Problems
Variation of Parameters Method for Non-Homogeneous Equations.
Boyce/DiPrima 9 th ed, Ch 5.1: Review of Power Series Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce.
Boyce/DiPrima 9th ed, Ch 4.2: Homogeneous Equations with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 9th edition,
Copyright © Cengage Learning. All rights reserved. 17 Second-Order Differential Equations.
Differential Equations MTH 242 Lecture # 13 Dr. Manshoor Ahmed.
Boyce/DiPrima 9 th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 3.2: Fundamental Solutions of Linear Homogeneous Equations Elementary Differential Equations and Boundary Value Problems, 9 th.
Boyce/DiPrima 9th ed, Ch 1.2: Solutions of Some Differential Equations Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9th ed, Ch 4.1: Higher Order Linear ODEs: General Theory Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9 th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Second-Order Differential
Math 3120 Differential Equations with Boundary Value Problems
Boyce/DiPrima 9th ed, Ch 3.3: Complex Roots of Characteristic Equation Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 9 th ed, Ch 2.2: Separable Equations Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and.
Boyce/DiPrima 9 th ed, Ch 11.3: Non- Homogeneous Boundary Value Problems Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch1.3: Classification of Differential Equations Elementary Differential Equations and Boundary Value Problems, 9 th edition, by.
Boyce/DiPrima 9 th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Boyce/DiPrima 9 th ed, Ch 5.3: Series Solutions Near an Ordinary Point, Part II Elementary Differential Equations and Boundary Value Problems, 9 th edition,
Boyce/DiPrima 9 th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William E. Boyce and Richard.
Boyce/DiPrima 9 th ed, Ch 2.6: Exact Equations & Integrating Factors Elementary Differential Equations and Boundary Value Problems, 9 th edition, by William.
Boyce/DiPrima 10th ed, Ch 7.9: Nonhomogeneous Linear Systems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.
Boyce/DiPrima 10th ed, Ch 10.4: Even and Odd Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
Ch 4.3: Nonhomogeneous Equations: Method of Undetermined Coefficients
Boyce/DiPrima 10th ed, Ch 6.2: Solution of Initial Value Problems Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 10.3: The Fourier Convergence Theorem Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Boyce/DiPrima 10th ed, Ch 10.8: Laplace’s Equation Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 9th ed, Ch 10.8 Appendix A: Derivation of the Heat Conduction Equation Elementary Differential Equations and Boundary Value Problems, 9th.
Boyce/DiPrima 10th ed, Ch 6.6: The Convolution Integral Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E.
Boyce/DiPrima 10th ed, Ch 6.3: Step Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 9th ed, Ch 2.7: Numerical Approximations: Euler’s Method Elementary Differential Equations and Boundary Value Problems, 9th edition, by.
Boyce/DiPrima 10th ed, Ch 7.4: Basic Theory of Systems of First Order Linear Equations Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 6.1: Definition of Laplace Transform Elementary Differential Equations and Boundary Value Problems, 10th edition, by William.
Ch 4.1: Higher Order Linear ODEs: General Theory
Boyce/DiPrima 10th ed, Ch 7.7: Fundamental Matrices Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 10th ed, Ch 7.8: Repeated Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
A second order ordinary differential equation has the general form
Boyce/DiPrima 10th ed, Ch 6.5: Impulse Functions Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce.
MAE 82 – Engineering Mathematics
Class Notes 8: High Order Linear Differential Equation Non Homogeneous
Class Notes 5: Second Order Differential Equation – Non Homogeneous
Ch 4.4: Variation of Parameters
Systems of Differential Equations Nonhomogeneous Systems
Boyce/DiPrima 10th ed, Ch 7.5: Homogeneous Linear Systems with Constant Coefficients Elementary Differential Equations and Boundary Value Problems, 10th.
Boyce/DiPrima 10th ed, Ch 6.4: Differential Equations with Discontinuous Forcing Functions Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 9th ed, Ch 4.3: Nonhomogeneous Equations: Method of Undetermined Coefficients Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 7.1: Introduction to Systems of First Order Linear Equations Elementary Differential Equations and Boundary Value Problems,
Boyce/DiPrima 10th ed, Ch 7.3: Systems of Linear Equations, Linear Independence, Eigenvalues Elementary Differential Equations and Boundary Value Problems,
Ch 3.7: Variation of Parameters
Ch 3.2: Fundamental Solutions of Linear Homogeneous Equations
Ch 4.1: Higher Order Linear ODEs: General Theory
Boyce/DiPrima 10th ed, Ch 7.6: Complex Eigenvalues Elementary Differential Equations and Boundary Value Problems, 10th edition, by William E. Boyce and.
Boyce/DiPrima 9th ed, Ch 5.3: Series Solutions Near an Ordinary Point, Part II Elementary Differential Equations and Boundary Value Problems, 9th edition,
Presentation transcript:

Boyce/DiPrima 9th ed, Ch 3.6: Variation of Parameters Elementary Differential Equations and Boundary Value Problems, 9th edition, by William E. Boyce and Richard C. DiPrima, ©2009 by John Wiley & Sons, Inc Recall the nonhomogeneous equation where p, q, g are continuous functions on an open interval I. The associated homogeneous equation is In this section we will learn the variation of parameters method to solve the nonhomogeneous equation. As with the method of undetermined coefficients, this procedure relies on knowing solutions to the homogeneous equation. Variation of parameters is a general method, and requires no detailed assumptions about solution form. However, certain integrals need to be evaluated, and this can present difficulties.

Example 1: Variation of Parameters (1 of 6) We seek a particular solution to the equation below. We cannot use the undetermined coefficients method since g(t) is a quotient of sin t or cos t, instead of a sum or product. Recall that the solution to the homogeneous equation is To find a particular solution to the nonhomogeneous equation, we begin with the form Then or

Example: Derivatives, 2nd Equation (2 of 6) From the previous slide, Note that we need two equations to solve for u1 and u2. The first equation is the differential equation. To get a second equation, we will require Then Next,

Example: Two Equations (3 of 6) Recall that our differential equation is Substituting y'' and y into this equation, we obtain This equation simplifies to Thus, to solve for u1 and u2, we have the two equations:

Example: Solve for u1' (4 of 6) To find u1 and u2 , we first need to solve for From second equation, Substituting this into the first equation,

Example : Solve for u1 and u2 (5 of 6) From the previous slide, Then Thus

Example: General Solution (6 of 6) Recall our equation and homogeneous solution yC: Using the expressions for u1 and u2 on the previous slide, the general solution to the differential equation is

Summary Suppose y1, y2 are fundamental solutions to the homogeneous equation associated with the nonhomogeneous equation above, where we note that the coefficient on y'' is 1. To find u1 and u2, we need to solve the equations Doing so, and using the Wronskian, we obtain Thus

Theorem 3.6.1 Consider the equations If the functions p, q and g are continuous on an open interval I, and if y1 and y2 are fundamental solutions to Eq. (2), then a particular solution of Eq. (1) is and the general solution is