MSR Image based Reality Project

Slides:



Advertisements
Similar presentations
Epipolar Geometry.
Advertisements

Lecture 11: Two-view geometry
CSE473/573 – Stereo and Multiple View Geometry
Stereo matching Class 7 Read Chapter 7 of tutorial Tsukuba dataset.
Multiview Reconstruction. Why More Than 2 Views? BaselineBaseline – Too short – low accuracy – Too long – matching becomes hard.
Some books on linear algebra Linear Algebra, Serge Lang, 2004 Finite Dimensional Vector Spaces, Paul R. Halmos, 1947 Matrix Computation, Gene H. Golub,
Gratuitous Picture US Naval Artillery Rangefinder from World War I (1918)!!
Stereo Many slides adapted from Steve Seitz. Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image Where does the.
MultiView Stereo Steve Seitz CSE590SS: Vision for Graphics.
Multiview Reconstruction. Why More Than 2 Views? BaselineBaseline – Too short – low accuracy – Too long – matching becomes hard.
Last Time Pinhole camera model, projection
Project 3 extension: Wednesday at noon Final project proposal extension: Friday at noon >consult with Steve, Rick, and/or Ian now! Project 2 artifact winners...
Lecture 12: Structure from motion CS6670: Computer Vision Noah Snavely.
Computer Vision CSE576, Spring 2005 Richard Szeliski
Computational Photography: Image-based Modeling Jinxiang Chai.
CSCE 641 Computer Graphics: Image-based Modeling Jinxiang Chai.
Epipolar Geometry Class 7 Read notes Feature tracking run iterative L-K warp & upsample Tracking Good features Multi-scale Transl. Affine.
Project 2 winners Think about Project 3 Guest lecture on Monday: Aseem Announcements.
Epipolar geometry. (i)Correspondence geometry: Given an image point x in the first view, how does this constrain the position of the corresponding point.
Structure from motion. Multiple-view geometry questions Scene geometry (structure): Given 2D point matches in two or more images, where are the corresponding.
Multiview stereo. Volumetric stereo Scene Volume V Input Images (Calibrated) Goal: Determine occupancy, “color” of points in V.
Multi-view stereo Many slides adapted from S. Seitz.
The plan for today Camera matrix
CSCE 641 Computer Graphics: Image-based Modeling Jinxiang Chai.
Multiple View Geometry Marc Pollefeys University of North Carolina at Chapel Hill Modified by Philippos Mordohai.
Stereo and Structure from Motion
Project 1 grades out Announcements. Multiview stereo Readings S. M. Seitz and C. R. Dyer, Photorealistic Scene Reconstruction by Voxel Coloring, International.
Multiview Reconstruction. Why More Than 2 Views? BaselineBaseline – Too short – low accuracy – Too long – matching becomes hard.
May 2004Stereo1 Introduction to Computer Vision CS / ECE 181B Tuesday, May 11, 2004  Multiple view geometry and stereo  Handout #6 available (check with.
Announcements Project Update Extension: due Friday, April 20 Create web page with description, results Present your project in class (~10min/each) on Friday,
Lec 21: Fundamental Matrix
From Images to Voxels Steve Seitz Carnegie Mellon University University of Washington SIGGRAPH 2000 Course on 3D Photography.
Lecture 25: Multi-view stereo, continued
Review: Binocular stereo If necessary, rectify the two stereo images to transform epipolar lines into scanlines For each pixel x in the first image Find.
3-D Scene u u’u’ Study the mathematical relations between corresponding image points. “Corresponding” means originated from the same 3D point. Objective.
Epipolar geometry Class 5. Geometric Computer Vision course schedule (tentative) LectureExercise Sept 16Introduction- Sept 23Geometry & Camera modelCamera.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
CSCE 641 Computer Graphics: Image-based Modeling Jinxiang Chai.
Computer Vision Spring ,-685 Instructor: S. Narasimhan WH 5409 T-R 10:30am – 11:50am Lecture #15.
Automatic Camera Calibration
Computer vision: models, learning and inference
Camera Calibration & Stereo Reconstruction Jinxiang Chai.
Lecture 11 Stereo Reconstruction I Lecture 11 Stereo Reconstruction I Mata kuliah: T Computer Vision Tahun: 2010.
Some books on linear algebra Linear Algebra, Serge Lang, 2004 Finite Dimensional Vector Spaces, Paul R. Halmos, 1947 Matrix Computation, Gene H. Golub,
Structure from images. Calibration Review: Pinhole Camera.
Stereo Many slides adapted from Steve Seitz.
Stereo Many slides adapted from Steve Seitz. Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image image 1image.
Computer Vision, Robert Pless
Computer Vision No. 7: Stereo part 2. Today’s topics u Projective geometry u Camera Projection Matrix u F Matrix u Multi View Shape Reconstruction.
Computer Vision Lecture #10 Hossam Abdelmunim 1 & Aly A. Farag 2 1 Computer & Systems Engineering Department, Ain Shams University, Cairo, Egypt 2 Electerical.
stereo Outline : Remind class of 3d geometry Introduction
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry Topics: Basics of projective geometry Points and hyperplanes in projective space Homography.
875 Dynamic Scene Reconstruction
CSCE 641 Computer Graphics: Image-based Modeling Jinxiang Chai.
Lec 26: Fundamental Matrix CS4670 / 5670: Computer Vision Kavita Bala.
CSE 185 Introduction to Computer Vision Stereo 2.
Robot Vision SS 2011 Matthias Rüther / Matthias Straka 1 ROBOT VISION Lesson 7: Volumetric Object Reconstruction Matthias Straka.
55:148 Digital Image Processing Chapter 11 3D Vision, Geometry
제 5 장 스테레오.
CS4670 / 5670: Computer Vision Kavita Bala Lec 27: Stereo.
Epipolar geometry.
Epipolar Geometry class 11
3D Photography: Epipolar geometry
Epipolar geometry continued
Multiple View Geometry for Robotics
Announcements Midterm due now Project 2 artifacts: vote today!
Reconstruction.
Two-view geometry Epipolar geometry F-matrix comp. 3D reconstruction
Announcements Project 3 out today (help session at end of class)
Stereo vision Many slides adapted from Steve Seitz.
Presentation transcript:

MSR Image based Reality Project http://research.microsoft.com/~larryz/videoviewinterpolation.htm …|

The visibility problem Which points are visible in which images? Known Scene Forward Visibility known scene Inverse Visibility known images Unknown Scene

Volumetric stereo Goal: Determine occupancy, “color” of points in V Scene Volume V Input Images (Calibrated) Goal: Determine occupancy, “color” of points in V

Discrete formulation: Voxel Coloring Discretized Scene Volume Input Images (Calibrated) Goal: Assign RGBA values to voxels in V photo-consistent with images

Complexity and computability Discretized Scene Volume 3 N voxels C colors All Scenes (CN3) True Scene Photo-Consistent Scenes

Issues Theoretical Questions Practical Questions Identify class of all photo-consistent scenes Practical Questions How do we compute photo-consistent models?

Voxel coloring solutions 1. C=2 (shape from silhouettes) Volume intersection [Baumgart 1974] For more info: Rapid octree construction from image sequences. R. Szeliski, CVGIP: Image Understanding, 58(1):23-32, July 1993. (this paper is apparently not available online) or W. Matusik, C. Buehler, R. Raskar, L. McMillan, and S. J. Gortler, Image-Based Visual Hulls, SIGGRAPH 2000 ( pdf 1.6 MB ) 2. C unconstrained, viewpoint constraints Voxel coloring algorithm [Seitz & Dyer 97] 3. General Case Space carving [Kutulakos & Seitz 98]

Reconstruction from Silhouettes (C = 2) Binary Images Approach: Backproject each silhouette Intersect backprojected volumes

Volume intersection Reconstruction Contains the True Scene But is generally not the same In the limit (all views) get visual hull Complement of all lines that don’t intersect S

Voxel algorithm for volume intersection O(MN^3) Color voxel black if on silhouette in every image for M images, N3 voxels Don’t have to search 2N3 possible scenes! O( ? ),

Properties of Volume Intersection Pros Easy to implement, fast Accelerated via octrees [Szeliski 1993] or interval techniques [Matusik 2000] Cons No concavities Reconstruction is not photo-consistent Requires identification of silhouettes

Voxel Coloring Solutions 1. C=2 (silhouettes) Volume intersection [Baumgart 1974] 2. C unconstrained, viewpoint constraints Voxel coloring algorithm [Seitz & Dyer 97] For more info: http://www.cs.washington.edu/homes/seitz/papers/ijcv99.pdf 3. General Case Space carving [Kutulakos & Seitz 98]

Voxel Coloring Approach 1. Choose voxel Color if consistent (standard deviation of pixel colors below threshold) 2. Project and correlate Visibility Problem: in which images is each voxel visible?

Depth Ordering: visit occluders first! Layers Scene Traversal Condition: depth order is the same for all input views

Panoramic Depth Ordering Cameras oriented in many different directions Planar depth ordering does not apply

Panoramic Depth Ordering Layers radiate outwards from cameras

Panoramic Layering Layers radiate outwards from cameras

Panoramic Layering Layers radiate outwards from cameras

Compatible Camera Configurations Depth-Order Constraint Scene outside convex hull of camera centers Outward-Looking cameras inside scene Inward-Looking cameras above scene

Calibrated Image Acquisition Selected Dinosaur Images Calibrated Turntable 360° rotation (21 images) Selected Flower Images

Voxel Coloring Results (Video) Dinosaur Reconstruction 72 K voxels colored 7.6 M voxels tested 7 min. to compute on a 250MHz SGI Flower Reconstruction 70 K voxels colored 7.6 M voxels tested 7 min. to compute on a 250MHz SGI

Limitations of Depth Ordering A view-independent depth order may not exist p q Need more powerful general-case algorithms Unconstrained camera positions Unconstrained scene geometry/topology

Voxel Coloring Solutions 1. C=2 (silhouettes) Volume intersection [Baumgart 1974] 2. C unconstrained, viewpoint constraints Voxel coloring algorithm [Seitz & Dyer 97] 3. General Case Space carving [Kutulakos & Seitz 98] For more info: http://www.cs.washington.edu/homes/seitz/papers/kutu-ijcv00.pdf

Space Carving Algorithm Initialize to a volume V containing the true scene Carve if not photo-consistent Choose a voxel on the current surface Project to visible input images Image 1 Image N …... Space Carving Algorithm Repeat until convergence

Which shape do you get? Photo Hull V V True Scene The Photo Hull is the UNION of all photo-consistent scenes in V It is a photo-consistent scene reconstruction Tightest possible bound on the true scene

Space Carving Algorithm The Basic Algorithm is Unwieldy Complex update procedure Alternative: Multi-Pass Plane Sweep Efficient, can use texture-mapping hardware Converges quickly in practice Easy to implement Results Algorithm

Multi-Pass Plane Sweep Sweep plane in each of 6 principle directions Consider cameras on only one side of plane Repeat until convergence True Scene Reconstruction

Multi-Pass Plane Sweep Sweep plane in each of 6 principle directions Consider cameras on only one side of plane Repeat until convergence

Multi-Pass Plane Sweep Sweep plane in each of 6 principle directions Consider cameras on only one side of plane Repeat until convergence

Multi-Pass Plane Sweep Sweep plane in each of 6 principle directions Consider cameras on only one side of plane Repeat until convergence

Multi-Pass Plane Sweep Sweep plane in each of 6 principle directions Consider cameras on only one side of plane Repeat until convergence

Multi-Pass Plane Sweep Sweep plane in each of 6 principle directions Consider cameras on only one side of plane Repeat until convergence

Space Carving Results: African Violet Input Image (1 of 45) Reconstruction Reconstruction Reconstruction

Space Carving Results: Hand Input Image (1 of 100) Views of Reconstruction

Properties of Space Carving Pros Voxel coloring version is easy to implement, fast Photo-consistent results No smoothness prior Cons Bulging

Alternatives to space carving Optimizing space carving recent surveys Slabaugh et al., 2001 Dyer et al., 2001 many others... Graph cuts Kolmogorov & Zabih Level sets introduce smoothness term surface represented as an implicit function in 3D volume optimize by solving PDE’s

Alternatives to space carving Optimizing space carving recent surveys Slabaugh et al., 2001 Dyer et al., 2001 many others... Graph cuts Kolmogorov & Zabih Level sets introduce smoothness term surface represented as an implicit function in 3D volume optimize by solving PDE’s

Level sets vs. space carving Advantages of level sets optimizes consistency with images + smoothness term excellent results for smooth things does not require as many images Advantages of space carving much simpler to implement runs faster (orders of magnitude) works better for thin structures, discontinuities For more info on level set stereo: Renaud Keriven’s page: http://cermics.enpc.fr/~keriven/stereo.html

References Volume Intersection Voxel Coloring and Space Carving Martin & Aggarwal, “Volumetric description of objects from multiple views”, Trans. Pattern Analysis and Machine Intelligence, 5(2), 1991, pp. 150-158. Szeliski, “Rapid Octree Construction from Image Sequences”, Computer Vision, Graphics, and Image Processing: Image Understanding, 58(1), 1993, pp. 23-32. Matusik, Buehler, Raskar, McMillan, and Gortler , “Image-Based Visual Hulls”, Proc. SIGGRAPH 2000, pp. 369-374. Voxel Coloring and Space Carving Seitz & Dyer, “Photorealistic Scene Reconstruction by Voxel Coloring”, Intl. Journal of Computer Vision (IJCV), 1999, 35(2), pp. 151-173. Kutulakos & Seitz, “A Theory of Shape by Space Carving”, International Journal of Computer Vision, 2000, 38(3), pp. 199-218. Recent surveys Slabaugh, Culbertson, Malzbender, & Schafer, “A Survey of Volumetric Scene Reconstruction Methods from Photographs”, Proc. workshop on Volume Graphics 2001, pp. 81-100. http://users.ece.gatech.edu/~slabaugh/personal/publications/vg01.pdf Dyer, “Volumetric Scene Reconstruction from Multiple Views”, Foundations of Image Understanding, L. S. Davis, ed., Kluwer, Boston, 2001, 469-489. ftp://ftp.cs.wisc.edu/computer-vision/repository/PDF/dyer.2001.fia.pdf

References Other references from this talk Multibaseline Stereo: Masatoshi Okutomi and Takeo Kanade. A multiple-baseline stereo. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 15(4), 1993, pp. 353--363. Level sets: Faugeras & Keriven, “Variational principles, surface evolution, PDE's, level set methods and the stereo problem", IEEE Trans. on Image Processing, 7(3), 1998, pp. 336-344. Mesh based: Fua & Leclerc, “Object-centered surface reconstruction: Combining multi-image stereo and shading", IJCV, 16, 1995, pp. 35-56. 3D Room: Narayanan, Rander, & Kanade, “Constructing Virtual Worlds Using Dense Stereo”, Proc. ICCV, 1998, pp. 3-10. Graph-based: Kolmogorov & Zabih, “Multi-Camera Scene Reconstruction via Graph Cuts”, Proc. European Conf. on Computer Vision (ECCV), 2002. Helmholtz Stereo: Zickler, Belhumeur, & Kriegman, “Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction”, IJCV, 49(2-3), 2002, pp. 215-227.

So far Passive Stereo Spacetime Stereo Multiple View Stereo

Next Structure from Motion: Given pixel correspondences, how to compute 3D structure and camera motion? Slides stolen from Prof Yungyu Chuang

Epipolar geometry & fundamental matrix

What if only C,C’,x are known? The epipolar geometry What if only C,C’,x are known?

C,C’,x,x’ and X are coplanar The epipolar geometry epipolar geometry demo C,C’,x,x’ and X are coplanar

All points on  project on l and l’ The epipolar geometry All points on  project on l and l’

The epipolar geometry Family of planes  and lines l and l’ intersect at e and e’

The epipolar geometry epipolar geometry demo epipolar pole = intersection of baseline with image plane = projection of projection center in other image epipolar geometry demo Epipoles: 2 Epipolar plane and lines: many epipolar plane = plane containing baseline epipolar line = intersection of epipolar plane with image

The fundamental matrix F p’ p R C C’ T=C’-C p and p’ are in 3d, x and x’ are in image plane The equation of the epipolar plane through X is

The fundamental matrix F essential matrix

The fundamental matrix F p’ p R C C’ T=C’-C

The fundamental matrix F Let M and M’ be the intrinsic matrices, then fundamental matrix

The fundamental matrix F p’ p R C C’ T=C’-C

The fundamental matrix F The fundamental matrix is the algebraic representation of epipolar geometry The fundamental matrix satisfies the condition that for any pair of corresponding points x↔x’ in the two images

The fundamental matrix F F is the unique 3x3 rank 2 matrix that satisfies x’TFx=0 for all x↔x’ Transpose: if F is fundamental matrix for (P,P’), then FT is fundamental matrix for (P’,P) Epipolar lines: l’=Fx & l=FTx’ Epipoles: on all epipolar lines, thus e’TFx=0, x e’TF=0, similarly Fe=0 F has 7 d.o.f. , i.e. 3x3-1(homogeneous)-1(rank2) F maps from a point x to a line l’=Fx (not invertible) 右邊的epipole e為所有epipolar lines的交點, 亦即對於所有左邊image上的點x, xFe=0, it implies Fe=0. 亦即存在一個非零點使得Fv=0. 故e為F之null space, rank(null(F))=1 => rank(F)=2

The fundamental matrix F It can be used for Simplifies matching Allows to detect wrong matches

Estimation of F — 8-point algorithm The fundamental matrix F is defined by for any pair of matches x and x’ in two images. Let x=(u,v,1)T and x’=(u’,v’,1)T, each match gives a linear equation