Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex

Slides:



Advertisements
Similar presentations
OPTIMIZATION OF FUNCTIONAL BRAIN ROIS VIA MAXIMIZATION OF CONSISTENCY OF STRUCTURAL CONNECTIVITY PROFILES Dajiang Zhu Computer Science Department The University.
Advertisements

BRIEF INTRO TO CORTICAL NEUROANATOMY
Journal of Vision. 2011;11(4):15. doi: / Figure Legend:
Moo K. Chung1,3, Kim M. Dalton3, Richard J. Davidson2,3
Volume 33, Issue 3, Pages (January 2002)
Davide Nardo, Valerio Santangelo, Emiliano Macaluso  Neuron 
Volume 60, Issue 4, Pages (November 2008)
Polymodal Motion Processing in Posterior Parietal and Premotor Cortex
Volume 88, Issue 2, Pages (October 2015)
Todd S Braver, Jeremy R Reynolds, David I Donaldson  Neuron 
Volume 96, Issue 4, Pages e2 (November 2017)
Volume 55, Issue 3, Pages (August 2007)
Araceli Ramirez-Cardenas, Maria Moskaleva, Andreas Nieder 
Cartography and Connectomes
Michael S Beauchamp, Kathryn E Lee, Brenna D Argall, Alex Martin 
Two Cortical Systems for Reaching in Central and Peripheral Vision
Linking Electrical Stimulation of Human Primary Visual Cortex, Size of Affected Cortical Area, Neuronal Responses, and Subjective Experience  Jonathan.
Volume 72, Issue 5, Pages (December 2011)
Volume 41, Issue 5, Pages (March 2004)
Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex
Todd S Braver, Jeremy R Reynolds, David I Donaldson  Neuron 
Disruption of Large-Scale Brain Systems in Advanced Aging
Brain Networks and Cognitive Architectures
Volume 89, Issue 2, Pages (January 2016)
Mirror-Symmetric Tonotopic Maps in Human Primary Auditory Cortex
A Parcellation Scheme for Human Left Lateral Parietal Cortex
Unreliable Evoked Responses in Autism
Volume 80, Issue 3, Pages (October 2013)
Volume 22, Issue 21, Pages (November 2012)
Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity  Rodrigo M. Braga, Randy L. Buckner 
Integration of Touch and Sound in Auditory Cortex
Jonathan J. Nassi, David C. Lyon, Edward M. Callaway  Neuron 
Volume 45, Issue 4, Pages (February 2005)
Michael S Beauchamp, Kathryn E Lee, Brenna D Argall, Alex Martin 
Volume 65, Issue 1, Pages (January 2010)
The Functional Neuroanatomy of Object Agnosia: A Case Study
Michael S. Beauchamp, Kathryn E. Lee, James V. Haxby, Alex Martin 
A Higher Order Motion Region in Human Inferior Parietal Lobule
Uri Hasson, Orit Furman, Dav Clark, Yadin Dudai, Lila Davachi  Neuron 
fMRI of Monkey Visual Cortex
Perception Matches Selectivity in the Human Anterior Color Center
Volume 47, Issue 5, Pages (September 2005)
Xiaomo Chen, Marc Zirnsak, Tirin Moore  Cell Reports 
David C. Lyon, Jonathan J. Nassi, Edward M. Callaway  Neuron 
Cerebral Responses to Change in Spatial Location of Unattended Sounds
Michael A. Silver, Amitai Shenhav, Mark D'Esposito  Neuron 
Looking into the Black Box: New Directions in Neuroimaging
Mark J. Buckley, Natasha Sigala  Neuron 
Sébastien Marti, Jean-Rémi King, Stanislas Dehaene  Neuron 
Facial-Expression and Gaze-Selective Responses in the Monkey Amygdala
Surface reconstructions of the Visible Man.
Neural and Computational Mechanisms of Action Processing: Interaction between Visual and Motor Representations  Martin A. Giese, Giacomo Rizzolatti  Neuron 
John T. Serences, Geoffrey M. Boynton  Neuron 
Michael S. Beauchamp, Kathryn E. Lee, James V. Haxby, Alex Martin 
Dynamic Shape Synthesis in Posterior Inferotemporal Cortex
Neuronal Mechanisms for Illusory Brightness Perception in Humans
Volume 47, Issue 6, Pages (September 2005)
Grid Cells and Neural Coding in High-End Cortices
Volume 77, Issue 3, Pages (February 2013)
Sharon L. Thompson-Schill, Mark D'Esposito, Irene P. Kan  Neuron 
Cortical Mechanisms Specific to Explicit Visual Object Recognition
Volume 74, Issue 5, Pages (June 2012)
A Hippocampal Marker of Recollection Memory Ability among Healthy Young Adults: Contributions of Posterior and Anterior Segments  Jordan Poppenk, Morris.
Two Cortical Systems for Reaching in Central and Peripheral Vision
Human Posterior Parietal Cortex Flexibly Determines Reference Frames for Reaching Based on Sensory Context  Pierre-Michel Bernier, Scott T. Grafton  Neuron 
César F. Lima, Saloni Krishnan, Sophie K. Scott 
Registration of macaque to human cortex using a standard set of landmarks likely to reflect homologies across species and additional landmarks derived.
Volume 72, Issue 5, Pages (December 2011)
Volume 81, Issue 3, Pages (February 2014)
Michael A. Silver, Amitai Shenhav, Mark D'Esposito  Neuron 
Presentation transcript:

Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex David C. Van Essen, Donna L. Dierker  Neuron  Volume 56, Issue 2, Pages 209-225 (October 2007) DOI: 10.1016/j.neuron.2007.10.015 Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 1 Shape Characteristics of Cerebral Cortex in an Individual Human Subject (A) A parasagittal section through the right hemisphere structural MRI (sMRI). Red contour shows a slice through the fiducial surface; contour thickness varies according to how obliquely the surface is sliced. (B) The right hemisphere fiducial surface generated using the SureFit algorithm in Caret, which provides an approximation to the cortical midthickness (layer 4). (C) A very inflated surface in which shape characteristics are represented by a map of sulcal depth (distance of each surface node to the nearest point in the “cerebral hull” (gyral crowns). (D) A flat map representation that shows the entire hemisphere in a single view. Data are accessible via http://sumsdb.wustl.edu/sums/directory.do?id=6650508. Neuron 2007 56, 209-225DOI: (10.1016/j.neuron.2007.10.015) Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 2 Medial Views of the Right Hemisphere in Two Individuals (A) The fiducial surface (top) and inflated surface (bottom) of Case A, with major sulci identified in the lower panel. (B) The fiducial surface (top) and inflated surface (bottom) of Case B. Blue arrows (top panels) show local features that are different in the two hemispheres or present in one but not the other. Insets show rotated views of the occipital pole, illustrating the ambiguous definition of the tip of the calcarine sulcus. (C and D) Lateral inflated views of left hemispheres of Cases (C) and (D), with blue arrows showing locations where intersubject correspondence is ambiguous. Data are accessible via http://sumsdb.wustl.edu/sums/directory.do?id=6650508. Neuron 2007 56, 209-225DOI: (10.1016/j.neuron.2007.10.015) Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 3 Shape Characteristics of Cerebral Cortex in an Individual Macaque (A) A parasagittal section through the right hemisphere sMRI of macaque F99UA1 (a.k.a. the F99 atlas, Table 1). Red contour shows a slice through the fiducial cortical midthickness surface. (B) The right hemisphere fiducial surface. (C) The very inflated surface, with a map of sulcal depth. (D) A flat map representation. Data are accessible via http://sumsdb.wustl.edu/sums/directory.do?id=6650508. Neuron 2007 56, 209-225DOI: (10.1016/j.neuron.2007.10.015) Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 4 Single-Brain and Population-Average Atlas Examples (A) High-resolution sMRI Colin27 individual-brain atlas. (B) Colin27 fiducial surface generated from the gray-white (GW) boundary (SUMA). (C) Colin27 fiducial surface generated from the cortical midthickness (CMT) surface (Caret; Van Essen, 2002). The CMT surface is generated automatically in Caret, but it can also be computed by averaging the GW and pial surfaces. (D) Coronal slice through the ICBM-152 volume-average population atlas (Mazziotta et al., 2001). Data are accessible via http://sumsdb.wustl.edu/sums/directory.do?id=6650508. Neuron 2007 56, 209-225DOI: (10.1016/j.neuron.2007.10.015) Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 5 The PALS-B12 Atlas (A) Average sMRI volume from 12 young adult subjects plus surface contours of the left and right hemisphere average fiducial surfaces. (B) Average fiducial surface generated by registering each surface to the atlas by a landmark-constrained deformation algorithm applied to spherical maps. (C–E) Inflated, very inflated, and flat map configurations shaded by maps of average sulcal depth. Highlighted nodes (black) represent corresponding locations in precentral and postcentral regions of the left and right hemispheres. (F) Spherical map used in registration of individuals to the atlas. (G) Standard-mesh representations of fiducial surfaces from two individuals, showing locations that are defined as geographically corresponding via the registration process. Data are accessible via http://sumsdb.wustl.edu/sums/directory.do?id=6650508. Neuron 2007 56, 209-225DOI: (10.1016/j.neuron.2007.10.015) Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 6 Study-Specific Average Surfaces (A) Population-average tactile fMRI responses viewed on a study-specific right hemisphere average surface after inflation (Beauchamp et al., 2007). Averaging the fMRI data on the surface reduces individual variability (Argall et al., 2006; see below), but displaying results on a study-specific average impedes comparisons across studies. Reproduced with permission from Beauchamp et al. (copyright 2007, the Society for Neuroscience). (B) A population-average cerebral hull model generated by sulcal landmark-constrained registration applied to implicit surfaces (Shi et al., 2007). (C) A map of variability among the nine contributing subjects. (B) and (C) are reproduced with permission from Shi et al. (copyright 2007, Elsevier). Neuron 2007 56, 209-225DOI: (10.1016/j.neuron.2007.10.015) Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 7 Cross-Platform Analyses of fMRI Data (A–C) Visualization of fMRI activations from three published studies carried out using volume-averaged analyses in different stereotaxic spaces, then mapped to the PALS atlas surface using space-specific multi-fiducial mapping to compensate for individual variability and for the differences between spaces (Van Essen, 2005a). Visuotopic area boundaries are mainly from the fMRI study of Hadjikhani et al. (1998). Data are accessible via http://sumsdb.wustl.edu/sums/directory.do?id=6650508. Neuron 2007 56, 209-225DOI: (10.1016/j.neuron.2007.10.015) Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 8 Meta-Analysis Results from Neuroimaging Studies Extracted from Databases and Displayed on Atlases (A) Mental rotation studies from the BrainMap database displayed on the Talairach atlas slice views using Sleuth software (http://brainmap.org/). (B) Mental rotation meta-analysis (Zacks, 2007) stored in SumsDB and displayed on the PALS atlas inflated surfaces using Caret (as shown here) or online using WebCaret. Using data sets accessible via http://sumsdb.wustl.edu/sums/directory.do?id=6650508, metadata for individual studies can be identified using color key (far right) and Identify Window (lower right), including links to the original online articles. Neuron 2007 56, 209-225DOI: (10.1016/j.neuron.2007.10.015) Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 9 SBR Outperforms VBR in Aligning Cortical Sulci (A and B) Medial views of the occipital lobe in surface reconstructions of two right hemispheres (Cases A and B, same as Figure 2) after VBR to 711-2B stereotaxic space. The calcarine sulcus (CaS) has very different trajectories in the two cases. (C and D) The different CaS trajectories are also evident in parasagittal sMRI slices through Cases A and B. (E) Segmentation-based map of the dorsal bank of the calcarine sulcus (CaSd) in Cases A and B. (F) Volume-averaged probabilistic map of the CaSd in 12 individuals, revealing only moderately good alignment (many dark red regions). (G) Map of the CaSd from Cases A and B after SBR to the PALS-B12 atlas surface, showing good alignment in most regions. (H) Probabilistic map of the CaSd from all 12 individuals after SBR, showing good overall alignment (bright red regions). Data are accessible via http://sumsdb.wustl.edu/sums/directory.do?id=6650508. Neuron 2007 56, 209-225DOI: (10.1016/j.neuron.2007.10.015) Copyright © 2007 Elsevier Inc. Terms and Conditions

Figure 10 Interspecies Comparisons of Cortical Organization (A) Macaque atlas (fiducial surface, lateral view) with architectonic areas from Lewis and Van Essen (2000) displayed. (B) Macaque areas registered to the human PALS atlas using interspecies SBR and 23 functionally defined landmarks (Orban et al., 2004). (C) Brodmann (1909) architectonic areas displayed on the inflated PALS atlas surface. (D) Map of cortical expansion based on the registration between macaque and human, showing hotspots of high expansion near the temporo-parietal junction and the dorsolateral prefrontal cortex. Data are accessible via http://sumsdb.wustl.edu/sums/directory.do?id=6650508. Neuron 2007 56, 209-225DOI: (10.1016/j.neuron.2007.10.015) Copyright © 2007 Elsevier Inc. Terms and Conditions