ILC 3.2 km DR design based on FODO lattice (DMC3)

Slides:



Advertisements
Similar presentations
SuperB Damping Rings M. Biagini, LNF-INFN P. Raimondi, SLAC/INFN A. Wolski, Cockroft Institute, UK SuperB III Workshop, SLAC, June 2006.
Advertisements

SuperB and the ILC Damping Rings Andy Wolski University of Liverpool/Cockcroft Institute 27 April, 2006.
First approach to the SuperB Rings M. Biagini, LNF-INFN April 26th, 2006 UK SuperB Meeting, Daresbury.
DR km DTC Lattice 7 July 2011 D. Rubin. DTC01 layout 1.Circumference = m, 712m straights 2.~ 6 phase trombone cells 3.54 – 1.92m long wigglers.
Y. Ohnishi / KEK KEKB-LER for ILC Damping Ring Study Simulation of low emittance lattice includes machine errors and optics corrections. Y. Ohnishi / KEK.
CLIC Pre-damping rings overview F. Antoniou, Y. Papaphilippou CLIC Workshop 2009.
Comparison between NLC, ILC and CLIC Damping Ring parameters May 8 th, 2007 CLIC Parameter working group Y. Papaphilippou.
Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
Lattice DSB (new version in progress) S. Guiducci Webex 8 February 2011.
DR 3.2 km Lattice Requirements Webex meeting 10 January 2011.
Damping Ring Parameters and Interface to Sources S. Guiducci BTR, LNF 7 July 2011.
ILC Damping Ring Alternative Lattice Design ( Modified FODO ) ** Yi-Peng Sun *,1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics,
Lattice design for CEPC main ring H. Geng, G. Xu, W. Chou, Y. Guo, N. Wang, Y. Peng, X. Cui, Y. Zhang, T. Yue, Z. Duan, Y. Wang, D. Wang, S. Bai, Q. Qin,
Global Design Effort ILC Damping Rings: R&D Plan and Organisation in the Technical Design Phase Andy Wolski University of Liverpool and the Cockcroft Institute,
Damping Ring Specifications S. Guiducci ALCPG11, 20 March 2011.
1 BROOKHAVEN SCIENCE ASSOCIATES 1 NSLS-II Lattice Design 1.TBA-24 Lattice Design - Advantages and shortcomings Low emittance -> high chromaticity -> small.
Parameter scan for the CLIC damping rings July 23rd, 2008 Y. Papaphilippou Thanks to H. Braun, M. Korostelev and D. Schulte.
HF2014 Workshop, Beijing, China 9-12 October 2014 Challenges and Status of the FCC-ee lattice design Bastian Haerer Challenges.
Third ILC Damping Rings R&D Mini-Workshop KEK, Tsukuba, Japan December 2007 Choosing the Baseline Lattice for the Engineering Design Phase Andy Wolski.
ILC DR Lower Horizontal Emittance, preliminary study
Design study of CEPC Alternating Magnetic Field Booster
100km CEPC parameter and lattice design
The Studies of Dynamic Aperture on CEPC
CEPC parameter optimization and lattice design
CLIC Damping ring beam transfer systems
ILC DR Lower Horizontal Emittance? -2
Large Booster and Collider Ring
Issues in CEPC pretzel and partial double ring scheme design
Non linear optimization of the CLIC pre-damping rings
Pretzel scheme of CEPC H. Geng, G. Xu, Y. Zhang, Q. Qin, J. Gao, W. Chou, Y. Guo, N. Wang, Y. Peng, X. Cui, T. Yue, Z. Duan, Y. Wang, D. Wang, S. Bai,
Optimization of CEPC Dynamic Aperture
Status of CEPC lattice design
CEPC Booster Design Dou Wang, Chenghui Yu, Tianjian Bian, Xiaohao Cui, Chuang Zhang, Yudong Liu, Na Wang, Daheng Ji, Jiyuan Zhai, Wen Kang, Cai Meng, Jie.
Lattice design for CEPC PDR
The new 7BA design of BAPS
DA study for CEPC Main Ring
DA Study for the CEPC Partial Double Ring Scheme
XII SuperB Project Workshop LAPP, Annecy, France, March 16-19, 2010
CEPC partial double ring scheme and crab-waist parameters
ANKA Seminar Ultra-low emittance for the CLIC damping rings using super-conducting wigglers Yannis PAPAPHILIPPOU October 8th, 2007.
CEPC Injector Damping Ring
CEPC parameter optimization and lattice design
Interaction region design for the partial double ring scheme
LHC (SSC) Byung Yunn CASA.
Collider Ring Optics & Related Issues
M. Biagini, S. Guiducci ECLOUD WG webex meeting December 15, 2009
CEPC APDR and PDR scheme
ILC 3.2 km DR design based on FODO lattice (DMC3)
CEPC advanced partial double ring scheme
Optics Design of the CEPC Interaction Region
CEPC parameter optimization and lattice design
Design study of CEPC Alternating Magnetic Field Booster
CEPC Partial Double Ring Lattice Design and DA Study
Design study of CEPC Alternating Magnetic Field Booster
Update of DA Study for the CEPC Partial Double Ring Scheme
CEPC parameter and DA optimization
Update of Lattice Design for CEPC Main Ring
CEPC Partial Double Ring Parameter Update
Update of Lattice Design for CEPC Main Ring
Lattice design for double ring scheme of CEPC main ring
Update of lattice design for CEPC main ring
Update on CEPC pretzel scheme design
Lattice design for CEPC
CEPC APDR and PDR scheme
Kicker and RF systems for Damping Rings
ANKA Seminar Ultra-low emittance for the CLIC damping rings using super-conducting wigglers Yannis PAPAPHILIPPOU October 8th, 2007.
Kicker specifications for Damping Rings
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
3.2 km FODO lattice for 10 Hz operation (DMC4)
Presentation transcript:

ILC 3.2 km DR design based on FODO lattice (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) Monday, 10 January 2011

Main properties of DMC3 3.2 km circumference, 5 GeV, 5 Hz repetition Racetrack layout Use FODO cell for arc sections Flexibility in momentum compaction between 2.7 ×10-4 and 6.2 ×10-4 Single tunnel for injection and extraction beam lines Locating the RF and wigglers near each other to minimise cryogenic transfer lines

Layout

Lattice functions Arc wiggler ring Inj/Extr

Major parameters of DMC3 DSB3 DMC3 Beam energy (GeV) 5.0 Circumference (m) 3238 3258 RF frequency (MHz) 650 Transverse damping time (ms) 24 23 Natural bunch length (mm) 6 Natural energy spread 1.2×10-3 1.26×10-3 Phase advance per FODO cell 60° 75° 90° Momentum compaction factor 1.3×10-4 6.19×10-4 4.04×10-4 2.77×10-4 Nomalised natural emittance (um) 5.2 6.27 4.45 3.58 RF voltage (MV) 7.5 33.0 21.84 15.36 Chromaticity in straights x/y -29.9/-24.4 -9.2/-8.8 -10.2/-8.8 -11.9/-11.9 Natural chromaticity x/y -101/-63 -42.3/-41.5 -51.2/-49.9 -63.7/-61.7 Total wiggler length (m) 78 98

Magnet parameters DMC3 DSB3 Arc dipole length 2.0 m 2.7 m Arc dipole field 0.154 T 0.26/0.36T Number of arc dipoles 344 128 Chicane dipole length 1.50 m 1.0 m Chicane dipole field 0.1 T 0.27 T Number of chicane dipoles 32 48 Quadrupole length 0.40 m 0.6/0.3 m Total number of quadrupoles 474 590/494? Sextupole length 0.25 m Total number of sextupoles 332 408

Dynamic aperture 75° 60° 90° DSB3

summary DMC3 DSB3 Arc cell FODO SuperB circumference 3.2 km layout Racetrack Physical requirements achieved Flexibility of momentum compaction Yes no momentum compaction Larger (2.7 10-4 ~ 6.2 10-4) Smaller (1.3×10-4) RF voltage higher lower Dynamic aperture larger smaller