ILC Baseline Design: Physics with Polarized Positrons

Slides:



Advertisements
Similar presentations
Fast and Precise Beam Energy Measurement at the International Linear Collider Michele Viti.
Advertisements

A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ,
Simulations with ‘Realistic’ Photon Spectra Mike Jenkins Lancaster University and The Cockcroft Institute.
JCS e + /e - Source Development and E166 J. C. Sheppard, SLAC June 15, 2005.
5 th Rencontres du Vietnam - Aug. 7, 2004 Polarized Positrons…E166 A.W.Weidemann 1 Introduction (What, who) Motivation (Why) Experiment and Polarimetry.
DESY PRC May 10, Beyond the One Photon Approximation in Lepton Scattering: A Definitive Experiment at DESY for J. Arrington (Argonne) D. Hasell,
Baseline Configuration - Highlights Barry Barish ILCSC 9-Feb-06.
K. LaihemE166 collaboration LCWS06 Bangalore March 12th 2006 The E166 experiment Development of a polarized positron source for the ILC. Karim Laihem on.
Undulator-Based Positron Production in the Final Focus Test Beam (E-166) K.T. McDonald, J.C. Sheppard, Co-Spokespersons SLAC Experimental Program Advisory.
K. Moffeit 6 Jan 2005 WORKSHOP Machine-Detector Interface at the International Linear Collider SLAC January 6-8, 2005 Polarimetry at the ILC Design issues.
3-March-06ILCSC Technical Highights1 ILC Technical Highlights Superconducting RF Main Linac.
Machine-Detector Interface MDI Panel Report MDI Panel is one of several World-Wide Study (WWS) panels (R&D, Detector costing, MDI, 2 IRs) Interim panel.
20 March 2005Ken Moffeit LCWS1 Highlights from the MDI workshop Spin Rotation System for 2 IR’s Downstream polarimetry Ken Moffeit.
Status of Undulator-based Positron Source Baseline Design Leo Jenner, but based largely on a talk given by Jim Clarke to Positron DESY-Zeuthen,
2 February 2005Ken Moffeit Spin Rotation scheme for two IRs Ken Moffeit SLAC.
M. Woods (SLAC) Beam Diagnostics for test facilities of i)  ii) polarized e+ source January 9 –11, 2002.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Beijing, Feb 3 rd, 2007 LEPOL 1 Low Energy Positron Polarimetry for the ILC Sabine Riemann (DESY) On behalf of the LEPOL Collaboration.
Simulation of Positron Production and Capturing. W. Gai, W. Liu, H. Wang and K. Kim Working with SLAC & DESY.
Beijing, Feb 3 rd, % e+ Poalarization 1 Physics with an initial positron polarisation of ≈30% Sabine Riemann (DESY)
Polarimetry at the LC Source Which type of polarimetry, at which energies for LC ? Sabine Riemann (DESY), LEPOL Group International Workshop on Linear.
Helical Undulator Based Positron Source for LC Wanming Liu 05/29/2013.
Energy calibration at LHC J. Wenninger. Motivation In general there is not much interest for accurate knowledge of the momentum in hadron machines. 
Key luminosity issues of the positron source Wei Gai.
1 Options for low energy spin manipulation Ken Moffeit, SLAC 2009 Linear Collider Workshop of the Americas 29 September to 3 October 2009 K. Moffeit, D.
EUROTeV WP4 Report Polarised Positron Source Jim Clarke, on behalf of the WP4 team DESY Zeuthen STFC (Daresbury and RAL) University of Durham University.
A.Variola Motivations…from D.Hitlin Talk The polarized positron source.
20 April 2009 AAP Review Global Design Effort 1 The Positron Source Jim Clarke STFC Daresbury Laboratory.
1 Overview of Polarimetry Outline of Talk Polarized Physics Machine-Detector Interface Issues Upstream Polarimeter Downstream Polarimeter Ken Moffeit,
Oct. 6, Summary of the Polarisation Session J. Clarke, G. Moortgat-Pick, S. Riemann 10 November 2006, ECFA Workshop, Valencia.
Polarisation monitoring Sabine Riemann, Andreas Schälicke, Andriy Ushakov (DESY) Positron Source Group Meeting, October, 2009 University of Durham.
Spin Control and Transportation O. Adeyemi*, M. Beckmann**, V. Kovalenko*, L. Malysheva*, G. Moortgat-Pick*, S. Riemann**, A. Schälicke**, A. Ushakov**
Laser Based Polarized e + e + Source for ILC 8th ACFA Daegu 11-14/Jul/2005 Tsunehiko OMORI (KEK)
Polarimetry Report Sabine Riemann on behalf of the DESY/HUB group January 24, 2008 EUROTeV Annual Meeting, Frascati.
Polarized positrons at the ILC: physics goal and source requirements EuCARD Workshop “Spin optimization at lepton accelerators” 13 February 2014 Sabine.
IWLC10, Geneva, 20/10/10 Gudrid Moortgat-Pick 1 Impact of polarized positrons for top/QCD and electroweak physics Gudrid Moortgat-Pick Hamburg University.
Fast or slow positron spin flipping Sabine Riemann (DESY) November 17, 2008 ILC08, University of Illinois - Chicago.
10/9/2007 Global Design Effort 1 Optical Matching Device Jeff Gronberg / LLNL October 9, 2007 Positron source KOM - Daresbury This work performed under.
Inputs from GG6 to decisions 2,7,8,15,21,27,34 V.Telnov Aug.24, 2005, Snowmass.
Undulator based polarized positron source for Circular electron-positron colliders Wei Gai Tsinghua University/ANL a seminar for IHEP, 4/8/2015.
Ken Moffeit SLAC LCWA09 1 Polarization Considerations for CLIC Ken Moffeit, SLAC 2009 Linear Collider Workshop of the Americas 29 September to 3 October.
Simulations - Beam dynamics in low emittance transport (LET: From the exit of Damping Ring) K. Kubo
WG3a Sources Update Jim Clarke on behalf of WG3a GDE Meeting, Frascati, December 2005.
T.Takahashi Hiroshima /11/5 Tohru Takahashi Hiroshima University 高橋 徹 広島大学.
November 20, 2008 A. Brachmann Slide 1 Sources Session Summary LCWS 2008 A. Brachmann, J. Clarke.
LNF Frascati, July 8, 2011 DR Technical Baseline Rev. Global Design Effort 1 DR Technical Baseline Review INFN LNF · Frascati, Italy July 7 and 8, 2011.
Undulator Based ILC positron source for TeV energy Wanming Liu Wei Gai ANL April 20, 2011.
Polarized positrons at low energies: Physics goal and source requirements Sabine Riemann, DESY Zeuthen Outline: ILC as Higgs factory At the top-quark threshold.
TLCC Themes BAW-2, SLAC, 19 January 2011 Ross Walker Yamamoto 1.
Positron polarization at the ILC: RDR vs. SB2009 Sabine Riemann, DESY Zeuthen International Workshop on Linear Colliders 2010, Geneva October 25-29, 2010.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim Posipol Workshop, Orsay, France May 23-25, 2007 Work performed.
LCWS Paris – April 19-23, 2004 Polarimeter Issues K. Peter Schüler Polarimeter Issues 1 Polarimeter Studies for TESLA O General Considerations O.
Spin Tracking at the ILC Positron Source with PPS-Sim POSIPOL’11 V.Kovalenko POSIPOL’11 V. Kovalenko 1, G. Moortgat-Pick 1, S. Riemann 2, A. Ushakov 1.
Positron Source for Linear Collider Wanming Liu 04/11/2013.
ILC Positron Production and Capturing Studies: Update Wei Gai, Wanming Liu and Kwang-Je Kim ILC GDE Meeting DESY May 30 – Jun2, 2007 Work performed for.
1 Positron Source Configuration Masao KURIKI ILC AG meeting at KEK, 2006 Jan. Positron Source Configuration KURIKI Masao and John Sheppard  BCD Description.
Model-independent WIMP searches at ILC with single photon
ILC - Upgrades Nick Walker – 100th meeting
A.P. Potylitsyn, I.S. Tropin Tomsk Polytechnic University,
THE STATUS OF POSITRON SOURSE DEVELOPMENT AT CORNELL-II
Progress with Spin Tracking in GEANT4
Overview of Polarimetry
Triple Gauge Couplings and Polarization at the ILC
CLIC Undulator Option for Polarised Positrons
Electron Polarization In MEIC
At a Future Linear Collider
Summary for the Sources working group
HL-LHC operations with LHCb at high luminosity
SuperB Workshop Frascati March 16, 2006
Yu.N. Filatov, A.M. Kondratenko, M.A. Kondratenko
Presentation transcript:

ILC Baseline Design: Physics with Polarized Positrons Sabine Riemann (DESY) 24 May 2007 Posipol, Orsay

S. Riemann: ILC Baseline Positron Polarization Outline Baseline Design  Low positron polarization Physics Case ? Utilization of Pe+ ≈ 30% helicity reversal requirements Summary and outlook 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

S. Riemann: ILC Baseline Positron Polarization Physics case Refer to previous talk(s) given by Gudi and others: e+ polarization  improves accuracy of SM measurements  increases sensitivity to physics beyond SM  decisively to find out what the underlying physics is With e+ polarization processes can be enhanced or suppressed; clean initial states with known helicities 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

S. Riemann: ILC Baseline Positron Polarization Baseline - Physics Physics between 200 GeV and 500 GeV Luminosity: Running year zero for commissioning Year 1-4: Lint = 500 fb-1: 1. year 10%  Lint ≈ 50 fb-1 2. year 30%  Lint ≈ 150 fb-1 3. Year 60%  Lint ≈ 300 fb-1 4. year 100%  Lint ≈ 500 fb-1  expected statistics: few 104 eeHZ at 350 GeV (mH≈120 GeV) 105 ee tt at 350 GeV 5·105 (1·105) ee  qq (mm) at 500 GeV 106 ee  WW at 500 GeV  statistical cross section uncertainties at per-mille level !!  e+ polarization will help (beginning of LC studies: Lint ~ 50 fb-1) 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

ILC Baseline design: e+ Polarization ? RDR: helical undulator (60% e+ = update value) 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

ILC Baseline design: e+ Polarization RDR: helical undulator  ~30% e+ polarization e+ spectrum with g collimator 3.4mrad photon beam: distance undulator center target ~ 500m 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

W. Gai Yield and Pol. The yield will drop from ~1.37 down to ~1.29 when length of drift increased up to 500m from 50m.

S. Riemann: ILC Baseline Positron Polarization Utilization of P=~30% 30% e+ polarization for physics? remember: first LC studies were done also with a (60%, 40%) option !! (60%; 40%)  Peff=0.81 (80%; 40%)  Peff=0.91 (80%; 30%)  Peff=0.88 30%  test of facilities during the first years of operation 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

S. Riemann: ILC Baseline Positron Polarization D Peff Decrease of error on Peff=(Pe- + Pe+)/(1+Pe- Pe+) see also Gudi’s talk for the advantages 30%: Improvement by factor 2 (1.5) 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

Draft RDR: Positron Source Linac to Damping Ring Beam Line: spin rotation line  need also spin flip for (+) AND (–) helicity of positrons If no polarization is needed  we have to destroy the 30%! (Few turns in DR without spin rotation before DR are not sufficient; see studies of L. Malysheva) 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

S. Riemann: ILC Baseline Positron Polarization e+ Helicity Reversal e+ helicity flip less frequent than e- helicity reversal e- trains - + - + - + - + - + - + e+ trains + + + + + + - - - - - - 50% spent to ‘wrong’ helicity pairing  gain due to xs enhancement for J=1 processes by e+ pol is lost improvement of DPeff remains for quite frequent reversal – and if systematic errors are small enough asymmetries can be measured, systematic effects are largely cancelled out If the e+ helicity will be switched quite frequently this scheme corresponds to a ‘slow’ Blondel scheme with luminosity ratio 1/1/1/1 for s++ / s+- / s-+ / s-- Can use annihilation data for polarization measurement (see POWER report and work done by K. Moenig) 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

Helicity reversal: Blondel Scheme Perform 4 independent measurements (s-channel vector exch.) Can determine Pe+ and Pe- simultaneously (ALR≠0) need polarimeters at IP for measuring polarization differences d|P+|±, d|P-|± between + and – states  DP (dP±) 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

S. Riemann: ILC Baseline Positron Polarization Helicity reversal Blondel Scheme technique measures directly lumi-weighted polarizations depolarization effect properly taken into account Polarization differences have to be measured with high accuracy Disadvantage of Blondel Scheme with high energy data: new physics in s-channel Estimated accuracy needed for the first 4 years:  dPeff/Peff ≤0.3% (0.5%) Long-term intensity stability  correction and additional syst. error 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

S. Riemann: ILC Baseline Positron Polarization Helicity reversal Frequency of e+ helicity reversal: + and – helicity with equal ratio  No reversal during the first year(s) is not an option at all! (…E166…) No reversal  Advantage of reduced error DALR on Peff is lost!! Low reversal frequencies (days): each measurement is done separately  large luminosity/intensity corrections  Need accurate measured lumi and intensities etc. 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

S. Riemann: ILC Baseline Positron Polarization Helicity reversal Tolerances: Intensity asymmetry: desired O(‰) (?) at the beginning 1% is more realistic polarization asymmetry: <1% Need to understand relative detector efficiency for ‘+ -’ and ‘- +’ modes at level of few 10-3, later 10-4 Need to measure polarization difference, |Pe+|+ - |Pe+|- at level of <10-2 later 10-3 ( polarimeter @ IP) To reach the high accuracy will be difficult unless we can measure the (+) and (-) modes simultaneously, i.e. to switch positron polarization randomly train-to-train Note: even if positrons are nominally unpolarized, we have tor verify this  desired (at least for the ~60% e+ polarization): train-by-train 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

S. Riemann: ILC Baseline Positron Polarization space for spin rotators must be foreseen K. Moffeit et al., SLAC-TN-05-045 Layout of positron damping ring system showing the parallel spin rotation beam lines for randomly selecting positron polarization direction. A pair of kicker magnets is turned on between pulse-trains to deflect the beam to the spin rotation solenoids with negative B-field. 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

S. Riemann: ILC Baseline Positron Polarization (90%, 0%)  (80%, 30%) ? similar size of effective polarization, Peff ~0.9 BUT: D Peff (90%; 0%) = 2…1.4 ·D Peff (80%; 30%) (uncor…correlated) Suppression of undesired helicity states for some processes with (80%, 30%) Is (90%,30%) an alternative to (80%, 60%) ? No - due to less significant physics goals (no transverse polarization  see Gudi’s talk) 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization

S. Riemann: ILC Baseline Positron Polarization Summary & Conclusion We will have a polarized machine from the beginning! Already 30% e+ polarization is benefit for physics Low P(e+) allows test of operation with both beams polarized Utilization of low e+ polarization needs - Positron polarization measurement - Spin rotation - Spin flip • frequency? Desired: train-by-train • proposed scheme exists: spin rotators before (LTR) and after the DR (RTL) are needed (see SLAC-TN-05-045, EUROTeV-Report-2005-024-1) • other solutions for helicity reversal? • no reversal is perhaps worse than no polarization! Further design & simulation work has to be done and should include the ~30% option (depolarisation, polarimeter, spin-flip-frequency etc.) 24 May 2007 Posipol, Orsay S. Riemann: ILC Baseline Positron Polarization