Introduction to Support Vector Machines (SVM)

Slides:



Advertisements
Similar presentations
Support Vector Machine
Advertisements

Generative Models Thus far we have essentially considered techniques that perform classification indirectly by modeling the training data, optimizing.
Support Vector Machines
Lecture 9 Support Vector Machines
ECG Signal processing (2)
Support Vector Machine & Its Applications Abhishek Sharma Dept. of EEE BIT Mesra Aug 16, 2010 Course: Neural Network Professor: Dr. B.M. Karan Semester.
Support Vector Machine & Its Applications Mingyue Tan The University of British Columbia Nov 26, 2004 A portion (1/3) of the slides are taken from Prof.
SVM - Support Vector Machines A new classification method for both linear and nonlinear data It uses a nonlinear mapping to transform the original training.
An Introduction of Support Vector Machine
Classification / Regression Support Vector Machines
An Introduction of Support Vector Machine
Support Vector Machines
SVM—Support Vector Machines
CSCE822 Data Mining and Warehousing
CSCI 347 / CS 4206: Data Mining Module 07: Implementations Topic 03: Linear Models.
Support Vector Machines (and Kernel Methods in general)
Support Vector Machines (SVMs) Chapter 5 (Duda et al.)
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
Support Vector Classification (Linearly Separable Case, Primal) The hyperplanethat solves the minimization problem: realizes the maximal margin hyperplane.
Support Vector Machines Based on Burges (1998), Scholkopf (1998), Cristianini and Shawe-Taylor (2000), and Hastie et al. (2001) David Madigan.
Support Vector Machines Kernel Machines
Classification Problem 2-Category Linearly Separable Case A- A+ Malignant Benign.
Sketched Derivation of error bound using VC-dimension (1) Bound our usual PAC expression by the probability that an algorithm has 0 error on the training.
Support Vector Machines
Sparse Kernels Methods Steve Gunn.
CS 4700: Foundations of Artificial Intelligence
2806 Neural Computation Support Vector Machines Lecture Ari Visa.
Lecture outline Support vector machines. Support Vector Machines Find a linear hyperplane (decision boundary) that will separate the data.
Support Vector Machines
Lecture 10: Support Vector Machines
Statistical Learning Theory: Classification Using Support Vector Machines John DiMona Some slides based on Prof Andrew Moore at CMU:
An Introduction to Support Vector Machines Martin Law.
Support Vector Machine & Image Classification Applications
CS 8751 ML & KDDSupport Vector Machines1 Support Vector Machines (SVMs) Learning mechanism based on linear programming Chooses a separating plane based.
Support Vector Machines Mei-Chen Yeh 04/20/2010. The Classification Problem Label instances, usually represented by feature vectors, into one of the predefined.
1 SUPPORT VECTOR MACHINES İsmail GÜNEŞ. 2 What is SVM? A new generation learning system. A new generation learning system. Based on recent advances in.
计算机学院 计算感知 Support Vector Machines. 2 University of Texas at Austin Machine Learning Group 计算感知 计算机学院 Perceptron Revisited: Linear Separators Binary classification.
10/18/ Support Vector MachinesM.W. Mak Support Vector Machines 1. Introduction to SVMs 2. Linear SVMs 3. Non-linear SVMs References: 1. S.Y. Kung,
An Introduction to Support Vector Machine (SVM) Presenter : Ahey Date : 2007/07/20 The slides are based on lecture notes of Prof. 林智仁 and Daniel Yeung.
Machine Learning Using Support Vector Machines (Paper Review) Presented to: Prof. Dr. Mohamed Batouche Prepared By: Asma B. Al-Saleh Amani A. Al-Ajlan.
Kernel Methods A B M Shawkat Ali 1 2 Data Mining ¤ DM or KDD (Knowledge Discovery in Databases) Extracting previously unknown, valid, and actionable.
SVM Support Vector Machines Presented by: Anas Assiri Supervisor Prof. Dr. Mohamed Batouche.
An Introduction to Support Vector Machines (M. Law)
1 Chapter 6. Classification and Prediction Overview Classification algorithms and methods Decision tree induction Bayesian classification Lazy learning.
Kernels Usman Roshan CS 675 Machine Learning. Feature space representation Consider two classes shown below Data cannot be separated by a hyperplane.
Ohad Hageby IDC Support Vector Machines & Kernel Machines IP Seminar 2008 IDC Herzliya.
An Introduction to Support Vector Machine (SVM)
SVM – Support Vector Machines Presented By: Bella Specktor.
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
Support Vector Machines
Support Vector Machines Tao Department of computer science University of Illinois.
Final Exam Review CS479/679 Pattern Recognition Dr. George Bebis 1.
CpSc 810: Machine Learning Support Vector Machine.
Greg GrudicIntro AI1 Support Vector Machine (SVM) Classification Greg Grudic.
Roughly overview of Support vector machines Reference: 1.Support vector machines and machine learning on documents. Christopher D. Manning, Prabhakar Raghavan.
Support Vector Machines (SVMs) Chapter 5 (Duda et al.) CS479/679 Pattern Recognition Dr. George Bebis.
CS 9633 Machine Learning Support Vector Machines
PREDICT 422: Practical Machine Learning
Support Vector Machines
An Introduction to Support Vector Machines
Kernels Usman Roshan.
An Introduction to Support Vector Machines
Support Vector Machines Introduction to Data Mining, 2nd Edition by
Pattern Recognition CS479/679 Pattern Recognition Dr. George Bebis
Support Vector Machines
Statistical Learning Dong Liu Dept. EEIS, USTC.
CSSE463: Image Recognition Day 14
The following slides are taken from:
Usman Roshan CS 675 Machine Learning
Machine Learning Support Vector Machine Supervised Learning
Presentation transcript:

Introduction to Support Vector Machines (SVM) By Debprakash Patnaik M.E (SSA)

Introduction SVMs provide a learning technique for Pattern Recognition Regression Estimation Solution provided SVM is Theoretically elegant Computationally Efficient Very effective in many Large practical problems It has a simple geometrical interpretation in a high-dimensional feature space that is nonlinearly related to input space By using kernels all computations keep simple. It contains ANN, RBF and Polynomial classifiers as special cases.

History The Study on Statistical Learning Theory was started in the 1960s by Vapnik Statistical Learning Theory is the theory about Machine Learning Principle from a small sample size. Support Vector Machine is a practical learning method based on Statistical Learning Theory A simple SVM could beat a sophisticated neural networks with elaborate features in a handwriting recognition task.

Learning Machine A bound on the Generalization Performance of Learning Machine Expected Risk: Empirical Risk: is the VC dimension, a measure of the notion of capacity of a classifier.

VC Dimension The VC dimension is a property of a set of functions , and can be defined for various classes of function . The VC dimension for the set of functions is defined as the maximum number of training points that can be shattered by . VC dimension gives concreteness to the notion of the capacity of a given set of functions. The number of parameters of Learning Machines is not proportional to the VC dimension.

VC Dimension – An example The VC-Dimension of the set of oriented hyperplanes in Rn is (n+1)

Structural Risk Minimization

Two Approaches Goal: To find a trained machine in the series whose sum of empirical risk and VC confidence is minimal. Neural Network Fix the VC confidence and minimize the empirical risk Support Vector Machine Fix the empirical risk and minimize the VC confidence

The Two Class Problem Several decision boundaries can separate these two classes. Perceptron Algorithm learns any separating hyperplane. SVM learns the best separating hyperplane. Class 1 Class 2

Simple Perceptron learning Algorithm Perceptron Algorithm Class 2 Class 1 Simple Perceptron learning Algorithm

Finding the Optimal Separating Hyperplane in SVM SVM Algorithm Class 2 Support Vectors Optimal Separating Hyperplane Class 1 Finding the Optimal Separating Hyperplane in SVM

Decision Boundary We should maximize the margin, m The decision boundary/hyperplane should be as far away from the data of both classes as possible. We should maximize the margin, m Class 2 m Class 1

The Optimization Problem Let {x1, ..., xn} be our data set And let yi Î {1,-1} be the class label of xi The decision boundary should classify all points correctly Þ A constrained optimization problem

Dual Formulation The Lagrangian for this problem is where are the Lagrange multipliers Quadratic cost Optimization and linear constraints. The Kuhn-Tucker Conditions for the problem where (w*,b*) is the global solution of L and µ* is the optimal Lagrange multiplier.

Support Vectors Complimentary Slackness condition We must have Support Vectors are the set of xi’s that have µ*i>0

The Dual Problem We can transform the problem to its dual subject to This is a quadratic programming (QP) problem w*,b* can be recovered by Let x(1) and x(-1) be two S.V. Then b = -1/2( w^T x(1) + w^T x(-1) )

A Geometrical Interpretation µ 10=0 Class 2 µ8=0.6 µ7=0 µ5=0 µ2=0 µ1=0.8 µ4=0 So, if change internal points, no effect on the decision boundary µ6=1.4 µ9=0 µ3=0 Class 1

Some Notes There are theoretical upper bounds on the error on unseen data for SVM The larger the margin, the smaller the bound The smaller the number of SV, the smaller the bound Note that in both training and testing, the data are referenced only as inner product, xTy This is important for generalizing to the non-linear case

If Not Linearly Separable We allow “error” xi in classification Class 2 Class 1

Soft Margin Hyperplane Define xi=0 if there is no error for xi xi are just “slack variables” in optimization theory We want to minimize C : tradeoff parameter between error and margin The optimization problem becomes

The New Optimization Problem The dual of the problem is w is also recovered as The only difference with the linear separable case is that there is an upper bound C on ai A QP solver can be used to find µi ‘s Note also, everything is done by inner-products

Extension to Non-linear Decision Boundary Key idea: transform xi to a higher dimensional space to “make classes linearly separable” Input space: the space xi are in Feature space: the space of f(xi) after transformation Why transform? Linear operation in the feature space is equivalent to non-linear operation in input space The classification task can be “easier” with a proper transformation. Example: XOR XOR: x_1, x_2, and we want to transform to x_1^2, x_2^2, x_1 x_2 It can also be viewed as feature extraction from the feature vector x, but now we extract more feature than the number of features in x.

Higher Dimensions Project the data to high dimensional space where it is linearly separable and then we can use linear SVM – (Using Kernels) (1,0) (0,0) (0,1) + - -1 +1 + -

The XOR problem X = ( x1, x2 ) Z = ( x1, x2, x1x2 )

Extension to Non-linear Decision Boundary Possible problem of the transformation High computation burden and hard to get a good estimate SVM solves these two issues simultaneously Kernel tricks for efficient computation Minimize ||w||2 can lead to a “good” classifier Feature space Input space Φ: x → φ(x)

What is Kernel?

Example Transformation Define the kernel function K (x,y) as Consider the following transformation The inner product can be computed by K without going through the map f(.)

Kernel Trick The relationship between the kernel function K and the mapping f(.) is This is known as the kernel trick In practice, we specify K, thereby specifying f(.) indirectly, instead of choosing f(.) K (x,y) needs to satisfy Mercer condition in order for f(.) to exist

Examples of Kernel Functions Polynomial kernel with degree d Radial basis function kernel with width s Closely related to radial basis function neural networks Sigmoid with parameter k and q It does not satisfy the Mercer condition on all k and q Despite violating Mercer condition, the sigmoid kernel function can still work

(x1,x2) y = -1 y = +1

Optimization Algorithms Most popular optimization algorithms for SVMs are SMO [Platt ’99] and SVMlight [Joachims’ 99], both use decomposition to hill-climb over a subset of µi’s at a time. Idea behind SMO Adjusting only 2 µi’s at each step All µi’s are initialized to be zero

SVM vs. Neural Networks SVM Neural Networks Relatively new concept Nice Generalization properties Hard to learn – learned in batch modes using QP techniques Using kernels can learn very complex functions Neural Networks Generalizes well but doesn’t have mathematical foundation Can easily be learnt in incremental fashion To learn complex function – use complex multi layer structure.

Example of Non-linear SVM

Results

A Nonlinear Kernel Application Checkerboard Training Set: 1000 Points in R2 Separate 486 Asterisks from 514 Dots

Previous Work

Polynomial Kernel

SVM Applications Pattern Recognition handwriting recognition 3D object recognition speaker identification face detection text categorization bio-informatics Regression estimation or function learning. More…

References [1] C.J.C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition”, 1998 [2] P.S. Sastry, “An Introduction to Support Vector Machine” [3] J. Platt, “Sequential minimal optimization: A fast algorithm for training support vector machines”, 1999