So far in memory management…

Slides:



Advertisements
Similar presentations
Memory.
Advertisements

Page Table Implementation
Main Memory CS Memory Management1. Background Program must be brought (from disk) into memory and placed within a process for it to be run Main.
Modified from Silberschatz, Galvin and Gagne Lecture 16 Chapter 8: Main Memory.
Memory Management.
1 Friday, June 30, 2006 "Man's mind, once stretched by a new idea, never regains its original dimensions." - Oliver Wendell Holmes, Jr.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 8: Main Memory.
Chapter 7: Main Memory CS 170, Fall Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation.
03/22/2004CSCI 315 Operating Systems Design1 Virtual Memory Notice: The slides for this lecture have been largely based on those accompanying the textbook.
A. Frank - P. Weisberg Operating Systems Simple/Basic Paging.
Main Memory. Background Program must be brought (from disk) into memory and placed within a process for it to be run Main memory and registers are only.
03/17/2008CSCI 315 Operating Systems Design1 Virtual Memory Notice: The slides for this lecture have been largely based on those accompanying the textbook.
1 Tuesday, July 04, 2006 "Programs expand to fill the memory available to hold them." - Modified Parkinson’s Law.
Chapter 8: Main Memory.
Chap 8 Memory Management. Background Program must be brought into memory and placed within a process for it to be run Input queue – collection of processes.
Chapter 8: Main Memory. 8.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 8: Memory Management Background Swapping Contiguous.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 346, Royden, Operating System Concepts Operating Systems Lecture 24 Paging.
Operating Systems Chapter 8
Chapter 8 Memory Management Dr. Yingwu Zhu. Outline Background Basic Concepts Memory Allocation.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 9: Memory Management Background Swapping Contiguous Allocation Paging Segmentation.
Background Program must be brought into memory and placed within a process for it to be run. Input queue – collection of processes on the disk that are.
Computer Architecture and Operating Systems CS 3230: Operating System Section Lecture OS-8 Memory Management (2) Department of Computer Science and Software.
8.1 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition Paging Physical address space of a process can be noncontiguous Avoids.
8.1 Silberschatz, Galvin and Gagne ©2005 Operating System Principles Implementation of Page Table Page table is kept in main memory Page-table base.
CE Operating Systems Lecture 14 Memory management.
CGS 3763 Operating Systems Concepts Spring 2013 Dan C. Marinescu Office: HEC 304 Office hours: M-Wd 11: :30 AM.
1 Memory Management (b). 2 Paging  Logical address space of a process can be noncontiguous; process is allocated physical memory whenever the latter.
9.1 Operating System Concepts Paging Example. 9.2 Operating System Concepts.
Paging Paging is a memory-management scheme that permits the physical-address space of a process to be noncontiguous. Paging avoids the considerable problem.
Page Table Implementation. Readings r Silbershatz et al:
Chapter 8: Main Memory. 8.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Memory and Addressing It all starts.
8.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Fragmentation External Fragmentation – total memory space exists to satisfy.
Silberschatz, Galvin and Gagne  Operating System Concepts Paging Logical address space of a process can be noncontiguous; process is allocated.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 8: Main Memory.
Chapter 7: Main Memory CS 170, Fall Program Execution & Memory Management Program execution Swapping Contiguous Memory Allocation Paging Structure.
W4118 Operating Systems Instructor: Junfeng Yang.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 33 Paging Read Ch. 9.4.
1 Chapter 8: Main Memory. 2 Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation.
Main Memory: Paging and Segmentation CSSE 332 Operating Systems Rose-Hulman Institute of Technology.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts – 9 th Edition, Chapter 8: Memory- Management Strategies.
COMP 3500 Introduction to Operating Systems Paging: Basic Method Dr. Xiao Qin Auburn University Slides.
8.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 8: Memory-Management Strategies.
Basic Paging (1) logical address space of a process can be made noncontiguous; process is allocated physical memory whenever the latter is available. Divide.
Module 9: Memory Management
Chapter 9: Memory Management
Chapter 8: Memory Management
Chapter 8: Main Memory Source & Copyright: Operating System Concepts, Silberschatz, Galvin and Gagne.
Chapter 8: Main Memory.
Chapter 8: Memory Management
Paging and Segmentation
Chapter 8: Main Memory.
Chapter 8: Main Memory.
Memory Management Lectures notes from the text supplement by Siberschatz and Galvin Modified by B.Ramamurthy 11/12/2018.
Storage Management Chapter 9: Memory Management
Operating System Concepts
Memory Management 11/17/2018 A. Berrached:CS4315:UHD.
Module 9: Memory Management
Chapter 8: Main Memory.
Chapter 8: Main Memory.
Memory Management Lectures notes from the text supplement by Siberschatz and Galvin Modified by B.Ramamurthy Chapter 8 11/24/2018.
Main Memory Session -15.
Background Program must be brought into memory and placed within a process for it to be run. Input queue – collection of processes on the disk that are.
Memory Management Lectures notes from the text supplement by Siberschatz and Galvin Modified by B.Ramamurthy Chapter 9 12/1/2018.
So far… Text RO …. printf() RW link printf Linking, loading
Memory Management-I 1.
Main Memory Background Swapping Contiguous Allocation Paging
Chapter 8: Memory Management strategies
Memory Management Lectures notes from the text supplement by Siberschatz and Galvin Modified by B.Ramamurthy Chapter 9 4/5/2019.
Virtual Memory.
Page Main Memory.
Presentation transcript:

So far in memory management… Logical vs physical address MMU for translation Swapping: moving memory back and forth from storage Contiguous allocation Base and limit register for protection MMU supported External and internal fragmentation

Paging for noncontiguous allocation Logical address space of a process can be noncontiguous; process is allocated physical memory whenever the latter is available Divide physical memory into fixed-sized blocks called frames (size is power of 2, between 512 bytes and 8192 bytes) Divide logical memory into blocks of same size called pages. Keep track of all free frames To run a program of size n pages, need to find n free frames and load program Set up a page table to translate logical to physical addresses This scheme will create internal fragmentation

Address Translation Scheme Address generated by CPU is divided into: Page number (p) – used as an index into a page table which contains base address of each page in physical memory Page offset (d) – combined with base address to define the physical memory address that is sent to the memory unit

Address Translation Architecture

Paging Example

Paging Example

Free Frames Before allocation After allocation

Implementation of Page Table Page table is kept in main memory Page-table base register (PTBR) points to the page table Page-table length register (PRLR) indicates size of the page table In this scheme every data/instruction access requires two memory accesses. One for the page table and one for the data/instruction. The two memory access problem can be solved by the use of a special fast-lookup hardware cache called associative memory or translation look-aside buffers (TLBs)

Associative Memory Associative memory – parallel search Address translation (A´, A´´) If A´ is in associative register, get frame # out Otherwise get frame # from page table in memory Page # Frame #

Paging Hardware With TLB

Effective Access Time Associative Lookup =  time unit Assume memory cycle time is 1 microsecond Hit ratio – percentage of times that a page number is found in the associative registers; ratio related to number of associative registers Hit ratio =  Effective Access Time (EAT) EAT = (1 + )  + (2 + )(1 – ) = 2 +  – 