Strength of Material Torsion Dr. Attaullah Shah.

Slides:



Advertisements
Similar presentations
Monday October 20. Motion of a rigid body Body can translate only. In this case we can replace the body by a point located at the center of mass. Body.
Advertisements

PROBLEM-1 The pipe shown in the figure has an inner diameter of 80 mm and an outer diameter of 100 mm. If its end is tightened against the support at A.
Angular Momentum The vector angular momentum of the point mass m about the point P is given by: The position vector of the mass m relative to the point.
GUJARAT TECHNOLOGICAL UNIVERSITY B.E Semester: 3 Civil Engineering Structural Analysis-1 Faculty: Chandra Bhakuni
Section VI Shaft Design.
3 Torsion.
1 Classes #3 & #4 Civil Engineering Materials – CIVE 2110 Torsion Fall 2010 Dr. Gupta Dr. Pickett.
TORSION Introduction, Round bar torsion, Non- uniform torsion
2E4: SOLIDS & STRUCTURES Lecture 13 Dr. Bidisha Ghosh Notes: lids & Structures.
Torsion: Shear Stress & Twist ( )
Chapter 5 – Torsion Figure: 05-00CO.
Torsion Torsional Deformation of a circular shaft,
3 Torsion.
Strength of Material-5 Torsion Dr. Attaullah Shah.
DESIGNING OF SHAFTS.
CHAPTER OBJECTIVES Discuss effects of applying torsional loading to a long straight member Determine stress distribution within the member under torsional.
Torsional Shaft Function: transmit torques from one plane to the other. Design of torsional shafts: stress and deformation T T T.
STRUCTURAL MECHANICS: CE203
A bar is shown in (a) in pure shear due to torsion
Strength of Materials I EGCE201 กำลังวัสดุ 1
Topic Torsion Farmula By Engr.Murtaza zulfiqar
Torsion  Introduction -- Analyzing the stresses and strains in machine parts which are subjected to torque T Circular -- Cross-section Non-circular.
Chapter 5 Torsion.
BFC (Mechanics of Materials) Chapter 6: Torsion
Strengths Torsion of Circular Shafts Chapter 12. Introduction A member subjected to twisting moments (torques) is called a shaft Only solid and hollow.
CHAPTER 5 TORSION.
1 Lecture by : LT “Sayed Dawod karimi” in the name of allah For NMAA and Kardan University Faculty of Engineering.
Chapter 3 Torsion Torsion Engr. Othman A. Tayeh. DEFORMATIONS IN A CIRCULAR SHAFT Φ the angle of twist.
CTC / MTC 222 Strength of Materials Chapter 5 Torsional Shear Stress and Torsional Deformation.
Copyright © 2011 Pearson Education South Asia Pte Ltd
Chapter 10: Rotation. Rotational Variables Radian Measure Angular Displacement Angular Velocity Angular Acceleration.
Torsion T T Torsional Deformation of a Circular Shaft
Mechanical Properties Session 07-14
CTC / MTC 222 Strength of Materials
Copyright 2005 by Nelson, a division of Thomson Canada Limited FIGURES FOR CHAPTER 3 TORSION Click the mouse or use the arrow keys to move to the next.
3 Torsion.
PROBLEM-1 State of stress at a point is represented by the element shown. Determine the state of stress at the point on another element orientated 30
Shear Stress Shear stress is defined a the component of force that acts parallel to a surface area Shear stress is defined a the component of force that.
PROBLEM mm x y 800 mm P = 1500 N z y 50 mm 100 mm
Mechanics of Materials – MAE 243 (Section 002) Spring 2008
Plane section does not remain plane after torsion, which complicates calculation of stress.
UNIT-05. Torsion And Buckling of columns Lecture Number-2 Mr. M. A. Mohite Mechanical Engineering S.I.T., Lonavala.
MECHANICS OF MATERIALS Third Edition Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University CHAPTER.
UNIT-05. Torsion And Buckling of columns
PROBLEM-1 The pipe shown in the figure has an inner diameter of 80 mm and an outer diameter of 100 mm. If its end is tightened against the support at A.
CHAPTER OBJECTIVES Discuss effects of applying torsional loading to a long straight member Determine stress distribution within the member under torsional.
PROBLEMS ON TORSION.
Strain Energy Due to Shear, Bending and Torsion Lecture No-6 J P Supale Mechanical Engineering Department SKN SITS LONAVALA Strength of Materials.
Unit-5. Torsion in Shafts and Buckling of Axially Loaded Columns Lecture Number-3 Mr. M.A.Mohite Mechanical Engineering S.I.T., Lonavala.
MECHANICS OF MATERIALS Fourth Edition Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University CHAPTER.
Subject :- Structural Analysis II Branch :- Civil-2 —A2 Prepared By :- (1) Patel Saurabh H. ( ) Submitted to :- Mr. Kunal j Patel.
BME 315 – Biomechanics Chapter 4. Mechanical Properties of the Body Professor: Darryl Thelen University of Wisconsin-Madison Fall 2009.
Solid Mechanics Course No. ME213. Thin Cylinders (Examples) ME213 Solid Mechanics2 Example 1.
STRENGTH OF MATERIALS UNIT – III Torsion.
Mechanical Properties of Materials
3 Torsion.
PROBLEMS ON TORSION.
New Chapter-- Fundamentals of Dimension Determination A Combined Chapters of 4, 6, 8 and 17 Mainly use the Teaching Notes.
3 Torsion.
Theory of Simple Bending
Physics Section 8-5 to 8-6 Rotational Dynamics.
FME201 Solid & Structural Mechanics I
DESIGNING OF SHAFTS.
Chapter Rotation In this chapter we will study the rotational motion of rigid bodies about a fixed axis. To describe this type of.
3 Torsion.
TORSION CO 2 : ABILITY TO ANALYZE TORQUE-LOADED MEMBER EVALUATE THE VALUES AND DISTRIBUTION OF BENDING AND SHEAR STRESSES IN BEAM SECTION By: ROSHAZITA.
Section 2 –Linear and Angular Velocity
CHAPTER OBJECTIVES Discuss effects of applying torsional loading to a long straight member Determine stress distribution within the member under torsional.
Mechanics of Materials ENGR Lecture 22 Torsion 1
Topics Since Exam 2 Shear and Moment Diagrams Torsion Bending
Presentation transcript:

Strength of Material Torsion Dr. Attaullah Shah

Torsion Torque or twisting moment T equivalent to F × d, which is applied perpendicular to the axis of the bar, as shown in the figure. Such a bar is said to be in torsion. TORSIONAL SHEARING STRESS, τ For a solid or hollow circular shaft subject to a twisting moment, the torsional shearing stress τ at a distance ρ from the center of the shaft is where J is the polar moment of inertia of the section and r is the outer radius.

ANGLE OF TWIST The angle θ through which the bar length L will twist is where T is the torque in N·mm, L is the length of shaft in mm, G is shear modulus in MPa, J is the polar moment of inertia in mm4, D and d are diameter in mm, and r is the radius in mm.

POWER TRANSMITTED BY THE SHAFT A shaft rotating with a constant angular velocity ω (in radians per second) is being acted by a twisting moment T. The power transmitted by the shaft is where T is the torque in N·m, f is the number of revolutions per second, and P is the power in watts.