Isotopic abundances of CR sources

Slides:



Advertisements
Similar presentations
Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
Advertisements

The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei Philipp Mertsch Rudolf Peierls Centre for Theoretical Physics, University.
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
Igor V. Moskalenko NASA Goddard Space Flight Center with Andy W. StrongStepan G. Mashnik Andy W. Strong (MPE, Germany) & Stepan.
Igor V. Moskalenko (Stanford) with S. Digel (SLAC) T. Porter (UCSC) O. Reimer (Stanford) O. Reimer (Stanford) A. W. Strong (MPE) A. W. Strong (MPE) Diffuse.
GLAST and NANTEN Molecular clouds as a probe of high energy phenomena Yasuo Fukui Nagoya University May 22, 2007 UCLA.
Cosmic Ray Transport in the Galaxy Vladimir Ptuskin IZMIRAN, Russia.
Simulating the Gamma Ray Sky Andrew McLeod SASS August 12, 2009.
Igor V. Moskalenko (Stanford) Challenges in Astrophysics of CR (knee--) & γ-rays  Intro to the relevant physics  Some of the challenges…  Modeling of.
Igor V. Moskalenko (Stanford) GALPROP Model for Galactic CR propagation and diffuse γ -ray emission.
Igor V. Moskalenko & Andy W. Strong NASA/GSFC MPE, Germany with Olaf Reimer Bochum, Germany Topics to cover: GALPROP: principles, internal structure, recent.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Igor V. Moskalenko (Stanford U.) with A.Strong (MPE), S.Digel (SLAC), T.Porter (USCS), O.Reimer (SU) Modeling of the Galactic diffuse continuum γ-ray emission.
Molecular clouds and gamma rays
Igor V. Moskalenko (Stanford U.) Challenges in Astrophysics of CR (knee--) & γ-rays Topics covered:  Intro to the relevant physics  Modeling of the CR.
HEAD 2010 – Mar.3, 2010 :: IVM/Stanford-KIPAC 1IVM/Stanford-KIPAC 1 PAMELA Workshop, Rome/May 12, 2009 Igor V. Moskalenko (stanford/kipac) Leptons in Cosmic.
Observations of SNR RX J with CANGAROO-II telescope Kyoto, Dec., 16, 2003 H. Katagiri, R. Enomoto, M. Mori, L. Ksenofontov Institute for cosmic.
38 th COSPAR, Bremen – July 18, 2010 :: IVM/Stanford-KIPAC 1 Galactic Cosmic Rays Igor V. Moskalenko Stanford & KIPAC Igor V. Moskalenko Stanford & KIPAC.
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
Analysis methods for Milky Way dark matter halo detection Aaron Sander 1, Larry Wai 2, Brian Winer 1, Richard Hughes 1, and Igor Moskalenko 2 1 Department.
Characterizing cosmic ray propagation in massive star forming regions: the case of 30 Dor and LMC E. J. Murphy et al. Arxiv:
Tsunefumi Mizuno 1 Fermi_Diffuse_2009Mar.ppt Diffuse Gamma- Rays seen by Fermi- LAT and Cosmic- Ray Distributions Tsunefumi Mizuno Hiroshima Univ. on behalf.
H, He, Li and Be Isotopes in the PAMELA-Experiment Wolfgang Menn University of Siegen On behalf of the PAMELA collaboration International Conference on.
FC10; June 25, 2010Image credit: Gerhard Bachmayer Constraining the Flux of Low- Energy Cosmic Rays Accelerated by the Supernova Remnant IC 443 N. Indriolo.
Propagation of CR electrons and the interpretation of diffuse  rays Andy Strong MPE, Garching GLAST Workshop, Rome, 17 Sept 2003 with Igor Moskalenko.
E.G.Berezhko, L.T. Ksenofontov Yu.G.Shafer Institute of Cosmophysical Research and Aeronomy Yakutsk, Russia Energy spectra of electrons and positrons,
Multi-wavelength signals of dark matter annihilations in the Galactic diffuse emission (based on MR and P. Ullio, arXiv: )‏ Marco Regis University.
論文紹介 _2010-Jan.ppt Tsunefumi Mizuno 1 Fermi 衛星でみた拡散ガンマ線放射と銀河宇宙線 Tsunefumi Mizuno Hiroshima Univ. June 15, 2009 "Fermi Large Area Telescope Measurements.
GLAST LAT Project I. MoskalenkoGLAST-for-lunch, Jan Local Group of Galaxies in the EGRET era and perspectives for GLAST Igor V. Moskalenko Stanford.
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
Fermi LAT Observations of Galactic and Extragalactic Diffuse Emission Jean-Marc Casandjian, on behalf of the Fermi LAT collaboration 7 questions addressed.
Igor V. Moskalenko (Stanford) with Seth Digel (SLAC) Troy Porter (LSU) Olaf Reimer (Stanford) Olaf Reimer (Stanford) Andrew W. Strong (MPE) Andrew W. Strong.
Cosmic rays, antimatter, dark matter: the need for cross section data
Voyager Observations of Galactic Cosmic Ray Transport in the Heliosheath and their Reacceleration at the Termination Shock F.B. McDonald 1, W.R. Webber.
Interstellar gamma-rays: first large-scale results from Fermi-LAT Andy Strong on behalf of Fermi-LAT collaboration ICRC Lodz 7-15 July 2009 OG2.1 ID 0390.
Dark Matter and CHARGED cosmic rays Fiorenza Donato Physics Dept. & INFN - Torino, Italy The International School for AstroParticle Physics (ISAPP) 2013,
Modified from talk of Igor V. Moskalenko (Stanford U.) GALPROP & Modeling the Diffuse  -ray Emission.
Netherlands Organisation for Scientific Research High resolution X-ray spectroscopy of the Interstellar Medium (ISM) C. Pinto (SRON), J. S. Kaastra (SRON),
on behalf of the NUCLEON collaboration
Topics on Dark Matter Annihilation
Diffuse Galactic Emission
35th International Cosmic Ray Conference
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
HARD X-RAY/SOFT g-RAY OBSERVATIONS OF THE GALACTIC DIFFUSE EMISSION WITH INTEGRAL/SPI SPI SPECTROMETER (20 keV – 8 MeV, foV 30°) ONBOARD INTEGRAL OBSERVATORY.
Fiorenza Donato Dipartimento di Fisica, Università di Torino
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
Current work on GALPROP
20 diffuse catalogue fans
Can dark matter annihilation account for the cosmic e+- excesses?
Cosmic-Rays Astrophysics with AMS-02
Determining the Spectrum of Cosmic Rays
Gamma-ray Albedo of the Moon Igor V. Moskalenko (Stanford) & Troy A
Optimizing Galaxy Simulations using FGST Observations
Status and issues for the LAT interstellar emission model
Status and issues for the LAT interstellar emission model
Splinter section: Diffuse emission
Testing the origin of high- energy cosmic rays
Propagation of cosmic rays
Galactic Diffuse Emission for DC2
V.N.Zirakashvili, V.S.Ptuskin
Galactic Cosmic-Rays Observed by Fermi-LAT
International Workshop
Instructor: Gregory Fleishman
「Cosmic-rays and diffused gamma-rays」
on behalf of the Fermi-LAT Collaboration
Using Z≤2 data to constrain cosmic-ray propagation models
Presentation transcript:

Isotopic abundances of CR sources Igor V. Moskalenko (Stanford) Andrew W. Strong (MPE) Troy A. Porter (UCSC)

CR Interactions in the Interstellar Medium 42 sigma (2003+2004 data) HESS SNR RX J1713-3946 PSF ISM X,γ e + - synchrotron Chandra B IC P He CNO ISRF diffusion energy losses reacceleration convection etc. bremss gas e + - π π + - GLAST gas P _ π + - p LiBeB Flux He CNO e + - 20 GeV/n BESS CR species: Only 1 location modulation PAMELA ACE helio-modulation

CR Propagation: Milky Way Galaxy 1 kpc ~ 3x1018 cm Optical image: Cheng et al. 1992, Brinkman et al. 1993 Radio contours: Condon et al. 1998 AJ 115, 1693 NGC891 100 pc Halo Gas, sources 40 kpc 0.1-0.01/ccm 1-100/ccm Sun 4-12 kpc Intergalactic space R Band image of NGC891 1.4 GHz continuum (NVSS), 1,2,…64 mJy/ beam “Flat halo” model (Ginzburg & Ptuskin 1976)

A Model of CR Propagation in the Galaxy Gas distribution (energy losses, π0, brems) Interstellar radiation field (IC, e± energy losses) Nuclear & particle production cross sections Transport equations for all CR species (H-Ni, pbars, e±) Energy losses: ionization, Coulomb, brems, IC, synch Fix propagation parameters Gamma-ray production: brems, IC, π0; synchrotron Astrophysics

Transport Equations ~90 (no. of CR species) sources (SNR, nuclear reactions…) diffusion convection (Galactic wind) diffusive reacceleration (diffusion in the momentum space) E-loss fragmentation radioactive decay ψ(r,p,t) – density per total momentum + boundary conditions

Column densities of gas Here are examples of the resulting ‘rings’ For the local (7.5-9.5 kpc) annulus we are incorporating new intermediate latitude CO survey data (Dame 2007) and additional coverage from the NANTEN survey in the south (Onishi, Mizuno, & Fukui 2004) WCO N(H I)

How It Works: Fixing Propagation Parameters E2 Flux B/C Carbon Radioactive isotopes: Galactic halo size Zh Interstellar Ek, GeV/nucleon Be10/Be9 Ek, MeV/nucleon Using secondary/primary nuclei ratio & flux: Diffusion coefficient and its index Propagation mode and its parameters (e.g., reacceleration VA, convection Vz) Zh increase Ek, MeV/nucleon

ACE Isotopic Abundances vs SS Abundances Solar System Wiedenbeck+2001

Fitting procedure Solar isotopic abundances Propagation (GALPROP) 64Ni … 1H Comparison with ACE data Fine adjustment of the source abundances: NSA=OSA*δ*(ACE-propagated) Solar modulation (force-field) Propagation parameters NSA=new source abundance OSA=old source abundance δ~0.01-0.001

Quality of the Fit problematic Xsections F V Ti 5% Reminder: Reacceleration Plain diffusion Ti 5% Reminder: fitted are the isotopic abundances while shown are elemental abund. Example: Carbon: 12C is fitted well, but 13C is overproduced – Xsection problems Accuracy: generally better than 5%

Source Isotopic Abundances vs SS Solar system: Anders & Grevesse’89 Lodders’03 Agrees remarkably well with the latest SS abundances by Lodder for many nuclei!

Detailed comparison 20Ne 32S 53Mn* 40Ca 41Ca* 22Ne P F 55Mn 15N 33S Good Xsections Well-known Differences in models ScTiV

Conclusions This is the first time that a `realistic' (i.e. full spatial- and energy-dependence) propagation model has been used to derive isotopic source abundances for a full range of nuclei The results are encouraging!