The Inverter EE4271 VLSI Design Professor Shiyan Hu Office: EERC 518

Slides:



Advertisements
Similar presentations
EE141 © Digital Integrated Circuits 2nd Wires 1 The Wires Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated Circuits: A Design.
Advertisements

© Digital Integrated Circuits 2nd Inverter EE4271 VLSI Design The Inverter Dr. Shiyan Hu Office: EERC 518 Adapted and modified from Digital.
VLSI Design EE213 VLSI DesignStephen Daniels 2003 R Vss R Vo Inverter : basic requirement for producing a complete range of Logic circuits.
Combinational MOS Logic Circuit
S. Reda VLSI Design Design and Implementation of VLSI Systems (EN1600) lecture09 Prof. Sherief Reda Division of Engineering, Brown University Spring 2008.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process I Dr. Shiyan Hu Office: EERC 518 Adapted and modified from Digital Integrated.
Digital Integrated Circuits© Prentice Hall 1995 Inverter THE INVERTERS.
© Digital Integrated Circuits 2nd Devices Device Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated Circuits: A.
© Digital Integrated Circuits 2nd Inverter EE5900 Advanced Algorithms for Robust VLSI CAD The Inverter Dr. Shiyan Hu Office: EERC 731 Adapted.
Device EE4271 VLSI Design Dr. Shiyan Hu Office: EERC 518
Digital Integrated Circuits A Design Perspective
EE5780 Advanced VLSI Computer-Aided Design
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process -II Dr. Shiyan Hu Office: EERC 518 Adapted and modified from Digital Integrated.
CMOS VLSI Design Lecture 4: DC & Transient Response Younglok Kim Sogang University Fall 2006.
CMOS OUTLINE » Fan-out » Propagation delay » CMOS power consumption.
The Devices: MOS Transistor
Lecture 3 Static properties (VTC and noise margins)
Digital Integrated Circuits A Design Perspective
Digital Integrated Circuits A Design Perspective
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2003 Lecture 04: CMOS Inverter (static view) Mary Jane.
Manufacturing Process -II
The MOS Transistor Figures from material provided with Digital Integrated Circuits, A Design Perspective, by Jan Rabaey, Prentice Hall, 1996.
VLSI System Design DC & Transient Response
Field Effect Transistors: Operation, Circuit Models, and Applications
Static and Transient Analysis of Gates
The Inverter EE4271 VLSI Design Professor Shiyan Hu Office: EERC 518
DC Characteristics of a CMOS Inverter
Manufacturing Process I
DMT 241 – Introduction to IC Layout
ENEE 303 2nd Discussion.
VLSI Design CMOS Inverter UNIT II :BASIC ELECTRICAL PROPERTIES
CMOS technology and CMOS Logic gate
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Recall Last Lecture The MOSFET has only one current, ID
EE141 Chapter 5 The Inverter April 10, 2003.
Pass Transistor Logic We want to transfer a logic 1 using the circuit below. Assume Vin = VDD, Vg makes a transition from 0V to VDD and at t=0 Vx = 0V.
Electronic Circuits Laboratory EE462G Lab #6
MOS Inverters 1.
CMOS Inverter First Glance
Lecture 4 EGRE 254 1/26/09.
Digital Integrated Circuits A Design Perspective
Lecture 19 OUTLINE The MOSFET: Structure and operation
Day 20: October 17, 2014 Ratioed Logic
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2002 Lecture 04: CMOS Inverter (static view) Mary Jane.
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
OUTLINE » Fan-out » Propagation delay » CMOS power consumption
DC & Transient Response
The Inverter EE4271 VLSI Design Dr. Shiyan Hu Office: EERC 731
Prof. Hsien-Hsin Sean Lee
Manufacturing Process I
Introduction to CMOS VLSI Design Lecture 5: DC & Transient Response
VLSI Lay-out Design.
Digital Integrated Circuits CMOS I: Static Characteristics
V.Navaneethakrishnan Dept. of ECE, CCET
UNIT-II Stick Diagrams
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Week 9a OUTLINE MOSFET ID vs. VGS characteristic
The Inverter EE4271 VLSI Design Dr. Shiyan Hu Office: EERC 731
Lecture 21 OUTLINE The MOSFET (cont’d) P-channel MOSFET
Device EE4271 VLSI Design Dr. Shiyan Hu Office: EERC 731
Lecture 5: DC & Transient Response
Regions of Operation Vg VDD Vds/L = 1V/um Vd Vds = Vgs-Vt Vd VDD VDD
Introduction EE4271 VLSI Design Professor Shiyan Hu Office: EERC 518
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response
Recall Last Lecture The MOSFET has only one current, ID
The Inverter EE4271 VLSI Design Dr. Shiyan Hu Office: EERC 518
Lecture #18 OUTLINE Reading Continue small signal analysis
Manufacturing Process I
Presentation transcript:

The Inverter EE4271 VLSI Design Professor Shiyan Hu Office: EERC 518 shiyan@mtu.edu The Inverter Adapted and modified from Digital Integrated Circuits: A Design Perspective by Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic.

Circuit Symbols

The CMOS Inverter: A First Glance out C L DD S D Vin=Vdd,Vout=0 Vin=0,Vout=Vdd

CMOS Inverter - First-Order DC Analysis DD in out R n p

CMOS Inverter: Transient Response DD DD Delay=0.69RC R p V out V out C L C L R n V V V in in DD (a) Low-to-high (b) High-to-low

NMOS In Inverter S D V C in out L DD For NMOS Vin=0, Vgsn=0<Vtn, Vdsn=Vout=Vdd, NMOS is in cut-off region, X1. PMOS is on. Vout=Vdd. Vin=Vdd, instantaneously, Vgsn=Vdd>Vtn,Vdsn=Vout=Vdd, Vgsn-Vtn=Vdd-Vtn<Vdd, NMOS is in saturation region, X2 Instantaneously, Vgsp=0>Vtp. PMOS cut-off NMOS is on so Vdsn->0. The operating point follows the arrow to the origin. Vout=0 at X3. NMOS In Inverter V in out C L DD S D

The CMOS Inverter Assume that Idsp=-Idsn when both transistors are on and Vtn=|Vtp| V in out C L DD S D

The CMOS Inverter – 2 (Region A) 0<Vin<Vtn V in out C L DD |Vgsp|=|Vin-Vdd|>|Vtp|, |Vdsp|=|Vd-Vdd|~0<|Vgsp-Vtp| PMOS linear region S D Vd is close to Vdd D S Vgsn=Vin<Vtn, NMOS cut-off

The CMOS Inverter – 3 (Region B) Vtn<Vin<Vdd/2 V in out C L DD |Vgsp|=|Vin-Vdd|>Vdd/2>|Vtp|, |Vdsp|~0<|Vgsp-Vtp| PMOS linear region S D D S Vgsn=Vin>Vtn, Vdsn=Vout=Vdd>Vgsn-Vtn NMOS saturation region

The CMOS Inverter - 4

The CMOS Inverter – 5 (Region C) Vin=Vdd/2 V in out C L DD |Vgsp|=|Vin-Vdd|>|Vtp|, |Vdsp|>|Vgsp-Vtp|, saturation S D D S Vgsn>Vtn, Vdsn>Vgsn-Vtn, saturation

The CMOS Inverter - 6 Usually, Usually we set for equal rising and falling propagation delay (same R for both devices) Since , we have

The CMOS Inverter 7 Vin=Vout=Vdd/2 The above analysis is actually correct for Vin=vdd/2 and all Vout such that both devices are in saturation regions For NMOS, Vout>Vin-Vtn For PMOS, Vgsp-Vtp>Vdsp ->Vout<Vin-Vtp Vin-Vtn<Vout<Vin-Vtp, so for Vin=Vdd/2, Vout can vary around Vdd/2

The CMOS Inverter – 9 (Region D) Vdd/2<Vin<Vdd-|Vtp| V in out C L DD |Vgsp|=|Vin-Vdd|>|Vtp|, |Vdsp|=|Vd-Vdd|>|Vgsp-Vtp|, PMOS saturation region S D D S Vgsn=Vin>Vtn, Vdsn=Vout<Vgsn-Vtn NMOS linear region

The CMOS Inverter - 10

The CMOS Inverter – 11 (Region E) Vin>Vdd-|Vtp| V in out C L DD |Vgsp|=|Vin-Vdd|<|Vtp|, PMOS cut-off S D D S Vgsn=Vin>Vtn, Vdsn<Vgsn-Vtn NMOS linear

The CMOS Inverter -12

The CMOS Inverter

Circuit Under Design

Its Layout View