The Origin of the Solar System

Slides:



Advertisements
Similar presentations
CHAPTER 5: Formation of the Solar System and Other Planetary Systems.
Advertisements

The Origin of the Solar System
Structure & Formation of the Solar System
Chapter 6 The Solar System. 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout of the Solar System Computing Planetary.
Slide 1 Average: 88 Median: 88 Test 2: 86 Test 1: 73.
Clicker Questions Chapter 4 The Solar System Copyright © 2010 Pearson Education, Inc.
The Solar System 1 star 9 8 planets 63 (major) moons
A Survey of the Solar System Class web site: Please take your assigned transmitter.
Question 1 Any theory of the origin of the Solar System must explain all of these EXCEPT 1) the orbits of the planets are nearly circular, and in the same.
The Origin of the Solar System
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Origin of the Solar System. Stars spew out 1/2 their mass as gas & dust as they die.
The Origin of the Solar System
Copyright © 2010 Pearson Education, Inc. Our Solar System.
© 2011 Pearson Education, Inc. Chapter 6 The Solar System.
The Origin of the Solar System
The Origin of the Solar System Lecture 13. Homework 7 due now Homework 8 – Due Monday, March 26 Unit 32: RQ1, TY1, 3 Unit 33: RQ4, TY1, 2, 3 Unit 35:
Origin of the Solar System. Stars spew out 1/2 their mass as gas & dust as they die.
Chapter 6.
Survey of the Solar System
AST 111 Lecture 15 Formation of the Solar System.
Chapter 6 The Solar System. 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout of the Solar System 6.4 Terrestrial.
The Origin of the Solar System Movie: The History of the Solar System Please swipe your ID for attendance tracking and take your assigned transmitter.
A Survey of the Solar System. Geocentric vs. Heliocentric.
© 2011 Pearson Education, Inc. Chapter 6 The Solar System.
The Origin of the Solar System. In the beginning, we started out looking like this, just a huge cloud of gas in space….
Formation of our solar system: The nebular hypothesis (Kant, 1755) Hydrogen (H), He (He) and “stardust” (heavier elements that were formed in previous.
Solar System Formation And the Stuff that was Left Over.
Late Work Due 12/20/13 Remember ain’t no butts about it! Sticking your head in the sand won’t make the deadlines go away 11 Days Remain.
The Origin of the Solar System. I. The Great Chain of Origins A. Early Hypotheses B. A Review of the Origin of Matter C. The Solar Nebula Hypothesis D.
Lecture Outlines Astronomy Today 7th Edition Chaisson/McMillan © 2011 Pearson Education, Inc. Chapter 6.
The Formation of Our Solar System The Nebular Hypothesis.
1 Earth and Other Planets 3 November 2015 Chapter 16 Great Idea: Earth, one of the planets that orbit the Sun, formed 4.5 billion years ago from a great.
Origins and Our Solar System
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
© 2017 Pearson Education, Inc.
© 2017 Pearson Education, Inc.
Our Solar System and Its Origin
The Origin of the Solar System
The Solar System (Sections 4.1 and 4.3 only)
Announcements Brooks Observatory tours (March )
Survey of the Solar System
Earth Mars Saturn Uranus Jupiter Uranus and Neptune Venus
Overview of the Solar System
The Origin of the Solar System
Space Science Formation of the Solar System and Other Planetary
The Planets Ali Nork.
Our Solar System and Its Origin
What is our little corner of the Milky Way Galaxy like?
Solar System Formation
Bell Ringer What is the order of the planets?
The Origin of the Solar System
The Formation of the Solar System
Any theory about the origin of the solar system must explain why all of the planets’ orbits lie more or less in a plane and all of the planets orbit the.
The bright star Antares embedded in dust and gases
Astronomy.
What remnants of early solar system structure remain?
Our Solar System and Its Origin
Overview of the Solar System Shaped like a thin disk
Formation of the Solar System and Other Planetary Systems.
Chapter 6 Our Solar System and Its Origin
Characteristics of the Solar System
The Origin of the Solar System
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
2. THE SOLAR SYSTEM’S EARLY HISTORY
Thought Question What does the solar system look like as a whole?
3A Objectives Describe the nebular theory in detail.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
The Solar System 1 star 9 8 planets 63 (major) moons
Presentation transcript:

The Origin of the Solar System

Outline I. The Great Chain of Origins A. Early Hypotheses B. A Review of the Origin of Matter C. The Solar Nebula Hypothesis D. Planet-Forming Disks E. Planets Orbiting Other Stars II. A Survey of the Solar System A. Revolution and Rotation B. Two Kinds of Planets C. Space Debris D. The Age of the Solar System

Outline (continued) III. The Story of Planet Building A. The Chemical Composition of the Solar Nebula B. The Condensation of Solids C. The Formation of Planetesimals D. The Growth of Protoplanets E. The Jovian Problem F. Explaining the Characteristics of the Solar System G. Clearing the Nebula

Early Solar System Ancient Greeks Were aware of Mercury, Venus, mars, Jupiter and Saturn Galileo was able to find the other planets using telescopes Uranus was discovered in the 18th century, Neptune in the 19th century The 20th century brought us Pluto

Comparative Planetology The planets in our solar system are very different. In the upcoming Units, we will understand what makes them different

Ways to compare planets Orbit Period Mass Radius Number of Moons Rotation period Density Surface of the planets

Density Density is mass over volume In other words, Density is how heavy a planet is (mass) divided by its size (volume)

Astronomical Units AU= Astronomical Unit The length of the earth to the sun From the sun to Pluto is 40 AU This is approximately 0.000625055 light years

Early Hypotheses catastrophic hypotheses, e.g., passing star hypothesis: Star passing the sun closely tore material out of the sun, from which planets could form (no longer considered) Catastrophic hypotheses predict: Only few stars should have planets! evolutionary hypotheses, e.g., Laplace’s nebular hypothesis: Rings of material separate from the spinning cloud, carrying away angular momentum of the cloud  cloud could contract further (forming the sun) Evolutionary hypotheses predict: Most stars should have planets!

The Solar Nebula Hypothesis Basis of modern theory of planet formation. Planets form at the same time from the same cloud as the star. Planet formation sites observed today as dust disks of T Tauri stars. Sun and our Solar system formed ~ 5 billion years ago.

 planets orbiting around other stars = “Extrasolar planets” Modern theory of planet formation is evolutionary  Many stars should have planets!  planets orbiting around other stars = “Extrasolar planets” Extrasolar planets can not be imaged directly. Detection using same methods as in binary star systems: Look for “wobbling” motion of the star around the common center of mass.

Evidence for Ongoing Planet Formation Many young stars in the Orion Nebula are surrounded by dust disks: Probably sites of planet formation right now!

Dust Disks Around Forming Stars Dust disks around some T Tauri stars can be imaged directly (HST).

Indirect Detection of Extrasolar Planets Observing periodic Doppler shifts of stars with no visible companion: Evidence for the wobbling motion of the star around the common center of mass of a planetary system Over 100 extrasolar planets detected so far.

Survey of the Solar System Relative Sizes of the Planets Assume, we reduce all bodies in the solar system so that the Earth has diameter 0.3 mm. Sun: ~ size of a small plum. Mercury, Venus, Earth, Mars: ~ size of a grain of salt. Jupiter: ~ size of an apple seed. Saturn: ~ slightly smaller than Jupiter’s “apple seed”. Pluto: ~ Speck of pepper.

Sense of revolution: counter-clockwise Planetary Orbits Orbits generally inclined by no more than 3.4o All planets in almost circular (elliptical) orbits around the sun, in approx. the same plane (ecliptic). Exceptions: Mercury (7o) Pluto (17.2o) Mercury Venus Mars Sense of revolution: counter-clockwise Earth Jupiter Sense of rotation: counter-clockwise (with exception of Venus, Uranus, and Pluto) Pluto Uranus Saturn Neptune (Distances and times reproduced to scale)

Two Kinds of Planets Planets of our solar system can be divided into two very different kinds: Terrestrial (earthlike) planets: Mercury, Venus, Earth, Mars Jovian (Jupiter-like) planets: Jupiter, Saturn, Uranus, Neptune

Terrestrial Planets Four inner planets of the solar system Relatively small in size and mass (Earth is the largest and most massive) Rocky surface Surface of Venus can not be seen directly from Earth because of its dense cloud cover.

Craters on Planets’ Surfaces Craters (like on our Moon’s surface) are common throughout the Solar System. Not seen on Jovian planets because they don’t have a solid surface.

The Jovian Planets Much lower average density All have rings (not only Saturn!) Mostly gas; no solid surface

Space Debris Asteroids, comets, meteoroids In addition to planets, small bodies orbit the sun: Asteroids, comets, meteoroids Asteroid Eros, imaged by the NEAR spacecraft

Comets Icy nucleus, which evaporates and gets blown into space by solar wind pressure. Mostly objects in highly elliptical orbits, occasionally coming close to the sun.

Meteoroids Small (mm – mm sized) dust grains throughout the solar system If they collide with Earth, they evaporate in the atmosphere.  Visible as streaks of light: meteors.

The Age of the Solar System Sun and planets should have about the same age. Ages of rocks can be measured through radioactive dating: Measure abundance of a radioactively decaying element to find the time since formation of the rock Dating of rocks on Earth, on the Moon, and meteorites all give ages of ~ 4.6 billion years.

Radioactive Decay (SLIDESHOW MODE ONLY)

Our Solar System

The Story of Planet Building Planets formed from the same protostellar material as the sun, still found in the Sun’s atmosphere. Rocky planet material formed from clumping together of dust grains in the protostellar cloud. Mass of less than ~ 15 Earth masses: Mass of more than ~ 15 Earth masses: Planets can grow by gravitationally attracting material from the protostellar cloud Planets can not grow by gravitational collapse Earthlike planets Jovian planets (gas giants)

The Condensation of Solids To compare densities of planets, compensate for compression due to the planet’s gravity: Only condensed materials could stick together to form planets Temperature in the protostellar cloud decreased outward. Further out  Protostellar cloud cooler  metals with lower melting point condensed  change of chemical composition throughout solar system

Formation and Growth of Planetesimals Planet formation starts with clumping together of grains of solid matter: Planetesimals Planetesimals (few cm to km in size) collide to form planets. Planetesimal growth through condensation and accretion. Gravitational instabilities may have helped in the growth of planetesimals into protoplanets.

The Growth of Protoplanets Simplest form of planet growth: Unchanged composition of accreted matter over time As rocks melted, heavier elements sink to the center  differentiation This also produces a secondary atmosphere  outgassing Improvement of this scenario: Gradual change of grain composition due to cooling of nebula and storing of heat from potential energy

The Jovian Problem Two problems for the theory of planet formation: 1) Observations of extrasolar planets indicate that Jovian planets are common. 2) Protoplanetary disks tend to be evaporated quickly (typically within ~ 100,000 years) by the radiation of nearby massive stars.  Too short for Jovian planets to grow! Solution: Computer simulations show that Jovian planets can grow by direct gas accretion without forming rocky planetesimals.

Clearing the Nebula Remains of the protostellar nebula were cleared away by: Radiation pressure of the sun Sweeping-up of space debris by planets Solar wind Ejection by close encounters with planets Surfaces of the Moon and Mercury show evidence for heavy bombardment by asteroids.

Exploring the planets Several missions have been taken to visit the various planets/moons in the solar system

Mercury Mariner 10 was able to take about 4000 photos of mercury’s surface This covered about 55% of the surface, the remaining 45% has yet to be explored

Venus Over 20 spacecraft have visited Venus over the years This includes the Magellan probe, Venera probes, and Mariner probes

Mars Mars has had several probes analyze its surface Have found evidence of water all throughout the martian surface, but most of the water is retained in the polar

Outer Planets These have been much more difficult, do to their size and their distance from earth Voyager and Galileo probes have been somewhat successful.

Discussion Questions 1. In your opinion, should all solar systems have asteroid belts? Should all solar systems show evidence of an age of heavy bombardment? 2. If the solar nebula hypothesis is correct, then there are probably more planets in the universe than stars. Do you agree? Why or why not?