ANT COLONY OPTIMIZATION

Slides:



Advertisements
Similar presentations
Computational Intelligence Winter Term 2011/12 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund.
Advertisements

Mobile Ad-hoc Network Simulator: mobile AntNet R. Hekmat * (CACTUS TermiNet - TU Delft/EWI/NAS) and Radovan Milosevic (MSc student) Mobile Ad-hoc networks.
Computational Intelligence Winter Term 2013/14 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund.
VEHICLE ROUTING PROBLEM
An Energy Efficient Routing Protocol for Cluster-Based Wireless Sensor Networks Using Ant Colony Optimization Ali-Asghar Salehpour, Babak Mirmobin, Ali.
1 Topic 7: Stigmergy, Swarm Intelligence and Ant Algorithms stigmergy swarm intelligence ant algorithms  AntNet: routing  AntSystem: TSP.
Ant colonies for the traveling salesman problem Eliran Natan Seminar in Bioinformatics (236818) – Spring 2013 Computer Science Department Technion - Israel.
Ant Colony Optimization. Brief introduction to ACO Ant colony optimization = ACO. Ants are capable of remarkably efficient discovery of short paths during.
Ant Colony Optimization An adaptative nature inspired algorithm explained, concretely implemented, and applied to routing protocols in wired and wireless.
Biologically Inspired Computation Lecture 10: Ant Colony Optimisation.
Ant Colony Optimization Chapter 5 Ant Colony Optimization for NP- Hard Problems Ben Sauskojus.
Ant Colony Optimization Optimisation Methods. Overview.
Ant Colony Optimization Algorithms for the Traveling Salesman Problem ACO Kristie Simpson EE536: Advanced Artificial Intelligence Montana State.
D Nagesh Kumar, IIScOptimization Methods: M1L4 1 Introduction and Basic Concepts Classical and Advanced Techniques for Optimization.
Presented by: Martyna Kowalczyk CSCI 658
When Ants Attack! Ant Algorithms for Subset Selection Problems Derek BridgeFinbarr TarrantChristine Solnon University College CorkUniversity of Lyon.
Ant Colony Optimization: an introduction
Ant Colony Optimization (ACO): Applications to Scheduling
1 IE 607 Heuristic Optimization Ant Colony Optimization.
FORS 8450 Advanced Forest Planning Lecture 19 Ant Colony Optimization.
Ant Colony Optimization
Ant colony optimization algorithms Mykulska Eugenia
Lecture: 5 Optimization Methods & Heuristic Strategies Ajmal Muhammad, Robert Forchheimer Information Coding Group ISY Department.
Part B Ants (Natural and Artificial) 8/25/ Real Ants (especially the black garden ant, Lasius niger)
Genetic Algorithms and Ant Colony Optimisation
EE4E,M.Sc. C++ Programming Assignment Introduction.
Swarm Computing Applications in Software Engineering By Chaitanya.
Swarm Intelligence 虞台文.
PSO and ASO Variants/Hybrids/Example Applications & Results Lecture 12 of Biologically Inspired Computing Purpose: Not just to show variants/etc … for.
Ant Colony Optimization. Summer 2010: Dr. M. Ameer Ali Ant Colony Optimization.
Ant Colony Optimization Theresa Meggie Barker von Haartman IE 516 Spring 2005.
Object Oriented Programming Assignment Introduction Dr. Mike Spann
Discrete optimization of trusses using ant colony metaphor Saurabh Samdani, Vinay Belambe, B.Tech Students, Indian Institute Of Technology Guwahati, Guwahati.
The Application of The Improved Hybrid Ant Colony Algorithm in Vehicle Routing Optimization Problem International Conference on Future Computer and Communication,
Topic 6: Stigmergy, Swarm Intelligence and Ant Algorithms swarm intelligence stigmergy ant algorithms  AntNet: routing  AntSystem: TSP.
Resource Constrained Project Scheduling Problem. Overview Resource Constrained Project Scheduling problem Job Shop scheduling problem Ant Colony Optimization.
Mobile Agent Migration Problem Yingyue Xu. Energy efficiency requirement of sensor networks Mobile agent computing paradigm Data fusion, distributed processing.
1 Genetic Algorithms and Ant Colony Optimisation.
Ant colony optimization. HISTORY introduced by Marco Dorigo (MILAN,ITALY) in his doctoral thesis in 1992 Using to solve traveling salesman problem(TSP).traveling.
Combinatorial Optimization Chapter 8, Essentials of Metaheuristics, 2013 Spring, 2014 Metaheuristics Byung-Hyun Ha R2.
Ant Colony Optimization Quadratic Assignment Problem Hernan AGUIRRE, Adel BEN HAJ YEDDER, Andre DIAS and Pascalis RAPTIS Problem Leader: Marco Dorigo Team.
Ant Colony Optimization 22c: 145, Chapter 12. Outline Introduction (Swarm intelligence) Natural behavior of ants First Algorithm: Ant System Improvements.
AntNet: A nature inspired routing algorithm
5 Fundamentals of Ant Colony Search Algorithms Yong-Hua Song, Haiyan Lu, Kwang Y. Lee, and I. K. Yu.
Ant Colony Optimization Andriy Baranov
Biologically Inspired Computation Ant Colony Optimisation.
AUT- Department of Industrial Engineering Behrooz Karimi 1 Ant Colony Optimization By: Dr. Behrooz Karimi
What is Ant Colony Optimization?
Ant Colony Optimisation. Emergent Problem Solving in Lasius Niger ants, For Lasius Niger ants, [Franks, 89] observed: –regulation of nest temperature.
Ant Colony Optimisation: Applications
Ant Colony Optimization
Ant Colony Optimization
Scientific Research Group in Egypt (SRGE)
Subject Name: Operation Research Subject Code: 10CS661 Prepared By:Mrs
Swarm Intelligence: From Natural to Artificial Systems
Ant colonies for traveling salesman problem
Study Guide for ES205 Yu-Chi Ho Jonathan T. Lee Nov. 7, 2000
Computational Intelligence
Fine-Grained Complexity Analysis of Improving Traveling Salesman Tours
Ant Colony Optimization Quadratic Assignment Problem
Metaheuristic methods and their applications. Optimization Problems Strategies for Solving NP-hard Optimization Problems What is a Metaheuristic Method?
Multi-Objective Optimization
Swarm Intelligence.
Overview of SWARM INTELLIGENCE and ANT COLONY OPTIMIZATION
Ant Colony Optimization
Design & Analysis of Algorithms Combinatorial optimization
traveling salesman problem
Ants and the TSP.
Computational Intelligence
Ant Colony Optimization
Presentation transcript:

ANT COLONY OPTIMIZATION By, Name: Suraj Padhy Roll: S/07/73 Regd.: 0701204232 Branch: CSE

Introduction In the next generation of wireless communication systems, there will be need of networks that can establish themselves without any requirement of preexisting infrastructure. Mobile Ad-Hoc Networks (MANETS). Mobile implies that the interconnecting nodes are not succumbed to be remain at one place, rather they can move from one place to the other. Ad-Hoc implies that the network does not depend on any preexisting infrastructure such as routers. One of the most important performance parameter in ad- hoc networks is minimizing the total transmission energy in the path and extending the battery life of the nodes.

Introduction cont… Conventional Routing algorithms were developed for that such as AODV [1], DSR[2] and TORA[3] . These protocols generally focus on finding the shortest path available from source node to the destination node. There exists a protocol Minimum Transmission Power Routing (MTPR) [4] which tries to minimize the total transmission power And the whole concept of ANT COLONY OPTIMIZATION is to minimize the path and power consumption.

General Tendency Of Ants Can explore vast areas without global view of the ground. Can find the food and bring it back to the nest. Will converge to the shortest path.

Ant Moves Four types: From home to food Goal has never been reached: moveStraightAwayFromAway(); Goal reached: moveTowardAway(); Back to home Goal has never been reached: moveFromFoodToHome(); Goal reached: moveFromHomeToFood(); Idea: generates several random moves and see which one is the best among them.

Applications Scheduling Telecommunication Network Graph Coloring Traveling Salesman Problem Quadratic Assignment Problem Network Model Problem Vehicle routing Scheduling Telecommunication Network Graph Coloring Water Distribution Network etc . . .

Traveling Salesman Problem TSP PROBLEM : Given N cities, and a distance function d between cities, find a tour that: 1. Goes through every city once and only once 2. Minimizes the total distance. Problem is NP-hard Classical combinatorial optimization problem to test.

ACO for Traveling Salesman Problem The TSP is a very important problem in the context of Ant Colony Optimization because it is the problem to which the original AS was first applied, and it has later often been used as a benchmark to test a new idea and algorithmic variants. The TSP was chosen for many reasons: It is a problem to which the ant colony metaphor It is one of the most studied NP-hard problems in the combinatorial optimization it is very easily to explain. So that the algorithm behavior is not obscured by too many technicalities.

Algorithm for TSP Initialize Place each ant in a randomly chosen city For Each Ant Choose NextCity(For Each Ant) yes more cities to visit No Return to the initial cities Update pheromone level using the tour cost for each ant No Stopping criteria yes Print Best tour

Iteration 1 2 [B] 1 [A] A B 3 [C] C 5 [E] 4 [D] D E

Iteration 2 5 [E,A] 3 [C,B] A B 2 [B,C] C 1 [A,D] 4 [D,E] D E

Iteration 3 A B C D E [D,E,A] [E,A,B] [A,D,C] [B,C,D] [C,B,E] 4 5 1 2

Iteration 4 A B C D E [B,C,D,A] [D,E,A,B] [E,A,B,C] [C,B,E,D] [A,DCE] 2 [B,C,D,A] 4 [D,E,A,B] A B 5 [E,A,B,C] C 3 [C,B,E,D] 1 [A,DCE] D E

Iteration 5 A B C D E [A,D,C,E,B] [C,B,E,D,A] [D,E,A,B,C] [E,A,B,C,D] 1 [A,D,C,E,B] 3 [C,B,E,D,A] A B 4 [D,E,A,B,C] C 5 [E,A,B,C,D] 2 [B,C,D,A,E] D E

ACO Algorithms : An Overview Problem name Authors Algorithm name Year Traveling salesman Dorigo, Maniezzo & Colorni AS 1991 Gamberdella & Dorigo Ant-Q 1995 Dorigo & Gamberdella ACS &ACS 3 opt 1996 Stutzle & Hoos MMAS 1997 Bullnheimer, Hartl & Strauss ASrank   Cordon, et al. BWAS 2000 Quadratic assignment Maniezzo, Colorni & Dorigo AS-QAP 1994 Gamberdella, Taillard & Dorigo HAS-QAP MMAS-QAP 1998 Maniezzo ANTS-QAP 1999 Maniezzo & Colorni Scheduling problems Colorni, Dorigo & Maniezzo AS-JSP Stutzle AS-SMTTP Barker et al ACS-SMTTP den Besten, Stutzle & Dorigo ACS-SMTWTP Merkle, Middenderf & Schmeck ACO-RCPS Vehicle routing AS-VRP Gamberdella, Taillard & Agazzi HAS-VRP

ACO Algorithms : An Overview cont… Problem name Authors Algorithm name Year Connection-oriented Schoonderwood et al. ABC 1996 network routing White, Pagurek & Oppacher ASGA 1998 Di Caro & Dorigo AntNet-FS Bonabeau et al. ABC-smart ants Connection-less AntNet & AntNet-FA 1997 Subramanian, Druschel & Chen Regular ants Heusse et al. CAF   van der Put & Rethkrantz ABC-backward Sequential ordering Gamberdella& Dorigo HAS-SOP Graph coloring Costa & Hertz ANTCOL Shortest common supersequence Michel & Middendorf AS_SCS Frequency assignment Maniezzo & Carbonaro ANTS-FAP Generalized assignment Ramalhinho Lourenco & Serra MMAS-GAP Multiple knapsack Leguizamon & Michalewicz AS-MKP 1999 Optical networks routing Navarro Varela & Sinclair ACO-VWP Redundancy allocation Liang & Smith ACO-RAP Constraint satisfaction Solnon Ant-P-solver 2000

Advantages Positive Feedback accounts for rapid discovery of good solutions Distributed computation avoids premature convergence The greedy heuristic helps find acceptable solution in the early solution in the early stages of the search process. The collective interaction of a population of agents.

Disadvantages Slower convergence than other Heuristics Performed poorly for TSP problems larger than 75 cities. No centralized processor to guide the AS towards good solutions

Conclusion ACO is a recently proposed metaheuristic approach for solving hard combinatorial optimization problems. Artificial ants implement a randomized construction heuristic which makes probabilistic decisions. The a cumulated search experience is taken into account by the adaptation of the pheromone trail. ACO Shows great performance with the “ill-structured” problems like network routing. In ACO Local search is extremely important to obtain good results.

Thank You