Can radio occultation be used to discern long-term tropopause trends?

Slides:



Advertisements
Similar presentations
Requirements for monitoring the global tropopause Bill Randel Atmospheric Chemistry Division NCAR.
Advertisements

Peculiar behavior of tropopause observed in tropical and extra tropical latitudes with CHAMP/GPS Radio Occultation measurements M. Venkat Ratnam and T.
Analysis of WRF Model Ensemble Forecast Skill for 80 m Winds over Iowa Shannon Rabideau 2010 IAWIND Conference 4/6/2010 Mentors: Eugene Takle, Adam Deppe.
IROWG - CGMS IROWG Climate Activities Co-Chairs: Axel von Engeln (EUMETSAT), Dave Ector (UCAR) Rapporteur: Tony Mannucci (NASA/JPL)
Long-Term Evolution of the Tropical Cold Point Tropopause Simulation Results and Attribution Analysis Thomas Reichler, U. of Utah, Salt Lake City, USA.
Global Weather Services in 2025-Progress toward the Vision Richard A. Anthes University Corporation for Atmospheric Research October 1, 2002 GOES User’s.
Wave-critical layer interactions observed using GPS data Bill Randel, NCAR.
Can radio occultation be used to discern long-term tropopause trends? Paul Staten and Thomas Reichler University of Utah.
GCOS Meeting Seattle, May 06 Using GPS for Climate Monitoring Christian Rocken UCAR/COSMIC Program Office.
New Satellite Capabilities and Existing Opportunities Bill Kuo 1 and Chris Velden 2 1 National Center for Atmospheric Research 2 University of Wisconsin.
Use of GPS RO in Operations at NCEP
Comparison of temperature data from HIPPO-1 flights using COSMIC profiles and Microwave Temperature Profiler. Kelly Schick 1,2,3 and Julie Haggerty, Ph.D.
Using GPS data to study the tropical tropopause Bill Randel National Center for Atmospheric Research Boulder, Colorado “You can observe a lot by just watching”
Diagnosing Climate Change from Satellite Sounding Measurements – From Filter Radiometers to Spectrometers William L. Smith Sr 1,2., Elisabeth Weisz 1,
ISCCP at 30, April 2013 Concurrent Study of a) 22 – year reanalysis and extension of global water vapor over both land and ocean (NVAP–M) and b) the matching.
Using GPS Radio Occultation Data Operationally at NOAA: Plans and Issues James G. Yoe NOAA/NESDIS Office of Research and Applications (ORA) Climate Research.
GPS Radio Occultation Sounding Zhen Zeng (HAO&COSMIC)
Climate change and stratosphere-troposphere coupling: Key questions Eugene Cordero, Nathan Gillett, Michael Sigmond, Shigeo Yoden.
Joint International GRACE Science Team Meeting and DFG SPP 1257 Symposium, Oct. 2007, GFZ Potsdam Folie 1 Retrieval of electron density profiles.
SI Traceability Applied to GPS RO October 22, 2008 CLARREO Workshop Oct 2008 AJM/JPL 1 SI Traceability Applied To GPS Radio Occultation A. J. Mannucci,
Simulated and Observed Atmospheric Circulation Patterns Associated with Extreme Temperature Days over North America Paul C. Loikith California Institute.
Use of GPS Radio Occultation Data for Climate Monitoring Y.-H. Kuo, C. Rocken, and R. A. Anthes University Corporation for Atmospheric Research.
Application of COSMIC refractivity in Improving Tropical Analyses and Forecasts H. Liu, J. Anderson, B. Kuo, C. Snyder, and Y. Chen NCAR IMAGe/COSMIC/MMM.
First global view of the Extratropical Tropopause Transition Layer (ExTL) from the ACE-FTS Michaela I. Hegglin, University of Toronto, CA Chris Boone,
GPS tropical tropopause temperatures and stratospheric water vapor William Randel 1 and Aurélien Podglajen 2 1 NCAR Atmospheric Chemistry Division 2 Pierre.
Comparison of Temperature Data from HIPPO-1 Flight Using COSMIC and Microwave Temperature Profiler Kelly Schick 1,2,3 and Julie Haggerty 4 1 Monarch High.
Key RO Advances Observation –Lower tropospheric penetration (open loop / demodulation) –Larger number of profiles (rising & setting) –Detailed precision.
FORMOSAT-3/COSMIC Science Highlights Bill Kuo UCAR COSMIC NCAR ESSL/MMM Division.
AGU Fall MeetingDec 11-15, 2006San Francisco, CA Estimates of the precision of GPS radio occultations from the FORMOSAT-3/COSMIC mission Bill Schreiner,
Preliminary results from assimilation of GPS radio occultation data in WRF using an ensemble filter H. Liu, J. Anderson, B. Kuo, C. Snyder, A. Caya IMAGe.
Improved Radio Occultation Observations for a COSMIC Follow-on Mission C. Rocken, S. Sokolovskiy, B. Schreiner UCAR / COSMIC D. Ector NOAA.
COSMIC Update and Highlights 8 November
Observed Recent Changes in the Tropopause Dian Seidel NOAA Air Resources Laboratory ~ Silver Spring, Maryland USA Bill Randel NCAR Atmospheric Chemistry.
Radio Occultation. Temperature [C] at 100 mb (16km) Evolving COSMIC Constellation.
Improving GPS RO Stratospheric Retrieval for Climate Benchmarking Chi O. Ao 1, Anthony J. Mannucci 1, E. Robert Kursinski 2 1 Jet Propulsion Laboratory,
Formosat3/COSMIC Workshop, Taipei, Oct. 1-3, 2008 The Ionosphere as Signal and Noise in Radio Occultation Christian Rocken, Sergey Sokolovskiy, Bill Schreiner,
Data Assimilation Retrieval of Electron Density Profiles from Radio Occultation Measurements Xin’an Yue, W. S. Schreiner, Jason Lin, C. Rocken, Y-H. Kuo.
1 3D-Var assimilation of CHAMP measurements at the Met Office Sean Healy, Adrian Jupp and Christian Marquardt.
GPS Observations for Atmospheric Science Ground-based and Radio Occultation Observations for Weather, Climate and Ionosphere C. Rocken, S. Sokolovskiy,
COSMIC Ionospheric measurements Jiuhou Lei NCAR ASP/HAO Research review, Boulder, March 8, 2007.
GPS Radio-Occultation data (COSMIC mission) Lidia Cucurull NOAA Joint Center for Satellite Data Assimilation.
Formosat-3/COSMIC WorkshopNov 28 - Dec 1, 2006Taipei, Taiwan Estimates of the precision of LEO orbit determination and GPS radio occultations from the.
Comparison of Temperature Data from HIPPO-1 Flights Using COSMIC and Microwave Temperature Profiler Kelly Schick 1,2,3 and Julie Haggerty 4 1 Monarch High.
COSMIC: Constellation Observing System for Meteorology, Ionosphere and Climate Mission Status and Results UCAR COSMIC Project FORMOSAT-3.
GPS radio occultation lecture 2 Extended applications
GPS radio occultation lecture 2 Extended applications
Static Stability in the Global UTLS Observations of Long-term Mean Structure and Variability using GPS Radio Occultation Data Kevin M. Grise David W.
Radio occultation (RO) and its use in NWP
SI Traceability Applied To GPS Radio Occultation
Jianbo Liu Characterizing Global Precipitation Patterns Using Results from CloudSat Jianbo Liu
Analysis of WRF Model Ensemble Forecast Skill for 80 m over Iowa
Objectives and opportunities for shared CryoSat-2 Icebridge experiments Prof. Duncan Wingham, CryoSat Lead Investigator.
SPP Colloquium, 16-Jun-2017, Bremen
Radio Occultation Observations for Weather, Climate and Ionosphere
WG Climate, March 6 – 9, 2016 Paris, France
Formosat3 / COSMIC The Ionosphere as Signal and Noise
Study of the sporadic E (Es) layer by GPS radio occultation (RO)
Hui Liu, Jeff Anderson, and Bill Kuo
Ionospheric Effect on the GNSS Radio Occultation Climate Data Record
COSMIC Data Analysis and Archival Center
Formosat3 / COSMIC The Ionosphere as Signal and Noise
Mission Status and Data Distribution
Comparability and Reproducibility of RO Data
Assimilation of Global Positioning System Radio Occultation Observations Using an Ensemble Filter in Atmospheric Prediction Models Hui Liu, Jefferey Anderson,
ExUTLS dynamics and global observations
Data Assimilation Initiative, NCAR
NSF Proposal Title: Duration: 5 year Amount: M/yr
Effects and magnitudes of some specific errors
Highlights from the 4th COSMIC Data Users Workshop
Presentation transcript:

Can radio occultation be used to discern long-term tropopause trends? Paul Staten and Thomas Reichler University of Utah

Outline Brief RO overview Describe precision of tropopause measurements Discuss errors in day-to-day tropopause measurements Demonstrate fitness of RO for tropopause climate studies

Radio Occultation How RO works The good news The bad news No calibration No instrument drift Global coverage Kuo et al., 2005 The bad news Engeln, 2006 - processing

CHAMP (Post Processed) RO Timeline Radiosondes GPS/MET CHAMP (Post Processed) CHAMP SAC-C COSMIC … 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 …

COSMIC Self Comparison vs. Image Courtesy Orbital Sciences Corporation Pointwise comparison Simulates a comparison between years

RMS Temperature Error (K) Boreal Winter, Tropics RMS Temperature Error (K) Number of Pairs Rocken et al. Hajj et al. This study Rocken et al. This study Hajj et al. Emphasize precision Rocken et al. 2 – 3 K global above 10 km GPSMET vs radiosondes (Shading = Contours) Hajj et al. 1.06 K global 5 – 15 km CHAMP vs SACC This Study 1.79 K tropical LRT COSMIC vs COSMIC

RMS Temperature Error Boreal Spring RMS Temperature Error Number of Pairs

COSMIC, 2006.111 to 2007.149, Zonal Mean, Time Mean Confidence Intervals COSMIC, 2006.111 to 2007.149, Zonal Mean, Time Mean Temperature Number of Pairs Number of Pairs Geopotential Height 3-degree bins 3-degree bins 48-degree bins 48-degree bins 11m 0.04K Seidel et al., 2001: -0.5 K decade-1 Seidel et al., 2001: +20 m decade-1 Gettelman & Forster, 2001: +50 m decade-1* > 0.04 K is significant > 11 m is significant * for CPT

COSMIC vs. CHAMP vs. Orbital Sciences Corporation © GFZ-Potsdam, Germany

Mean and Confidence Interval 2006.221-2007.149 compare to ~2000 pairs for COSMIC 95% Confidence Interval Number of Pairs -0.05 Mean TCOSMIC - TCHAMP 0.14 Compare to -0.5 K decade-1 (Seidel) For tropics, trend in < 5 years (no overlap)

Conclusions Radio occultation Provides an abundance of tropopause data Allows precise characterization of tropopause across times scales Can detect climate trends with confidence

Future Work Investigate processing effect Validate against radiosonde data Produce 12-year time series

Thank You.

Post – Processing Blue shows post processing Boreal Fall CHAMP (PP) – CHAMP CHAMP (PP) – COSMIC CHAMP - COSMIC Blue shows post processing Most bias is due to post processing

Boreal Winter, SH Subtropics RMS Temperature Error Boreal Winter, SH Subtropics RMS Temperature Error Number of Comparisons Emphasize precision Higher variability than in tropics Steeper slope (~7m/s) than in tropics

Occultation Locations for COSMIC, 6 S/C, 6 Planes, 24 Hrs COSMIC DISTRIBUTION Occultation Locations for COSMIC, 6 S/C, 6 Planes, 24 Hrs Illustration by Bill Schreiner, UCAR

References Gettelman, A. and P. M. de F Forster (2002): A Climatology of the Tropical Tropopause Layer, JMSJ, Vol. 80, 911-924. Kuo, Y., C. Rocken, and R. Anthens (2005): Use of GPS radio occultation data for climate monitoring, 16th Conference on Climate Variability and Change, San Diego, CA, Amer. Meteor. Soc. Rocken, C., et al. (1997): Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res., 102, 29849-29866. Seidel, D. J., R. J. Ross, J. K. Angell, and G. C. Reid (2001): Climatological characteristics of the tropical tropopause as revealed by radiosondes, J. Geophys. Res., 106, 7857– 7878. von Engeln, A. (2006): A first test of climate monitoring with radio occultation instruments: Comparing two processing centers, Geophys. Res. Lett., 33, L22705, doi:10.1029/2006GL027767.