影像強化(Image Enhancement)

Slides:



Advertisements
Similar presentations
Image Enhancement in the Spatial Domain II Jen-Chang Liu, 2006.
Advertisements

An Incremental Approach to Feature Aligned Quad Dominant Remeshing ACM Symposium on Solid and Physical Modeling 2008 報告者 : 丁琨桓.
指導教授:陳淑媛 學生:李宗叡 李卿輔.  利用下列三種方法 (Edge Detection 、 Local Binary Pattern 、 Structured Local Edge Pattern) 來判斷是否為場景變換,以方便使用者來 找出所要的片段。
CSE 589 Applied Algorithms Spring 1999 Image Compression Vector Quantization Nearest Neighbor Search.
Section 2.2 Correlation 相關係數. 散佈圖 1 散佈圖 2 散佈圖的盲點 兩座標軸的刻度不同,散佈圖的外觀呈 現的相聯性強度,會有不同的感受。 散佈圖 2 相聯性看起來比散佈圖 1 來得強。 以統計數字相關係數做為客觀標準。
Wavelet transform and SPIHT 林明德. Wavelet transform & SPIHT Wavelet transform  濾波器組  程式功能  額外資訊 SPIHT  將不同功能的 SPIHT 做整合  用於各種長寬的圖檔  適用於 DSC 的 SPIHT.
空間域之影像強化 3.1 背景介紹 3.2 基礎灰階值轉換 3.3 以灰階統計圖為基礎之處理 3.4 算術與邏輯運算 3.5 基礎空間域濾波
具備人臉追蹤與辨識功能的一個 智慧型數位監視系統 系統架構 在巡邏模式中 ,攝影機會左右來回巡視,並 利用動態膚色偵測得知是否有移動膚色物體, 若有移動的膚色物體則進入到追蹤模式,反之 則繼續巡視。
Matlab Assignment Due Assignment 兩個 matlab 程式 : Eigenface : Eigenvector 和 eigenvalue 的應用. Fractal : Affine transform( rotation, translation,
7.1 背景介紹 7.2 多解析度擴展 7.3 一維小波轉換 7.4 快速小波轉換 7.5 二維小波轉換 7.6 小波封包
Vector Quantization. 2 outline Introduction Two measurement : quality of image and bit rate Advantages of Vector Quantization over Scalar Quantization.
Final-project 資科碩二 蔡瑞陽 Furukawa, Y. and Ponce, J. “ Accurate, Dense, and Robust Multi-View Stereopsis ” IEEE Conference on Computer Vision and.
Losslessy Compression of Multimedia Data Hao Jiang Computer Science Department Sept. 25, 2007.
Image Interpolation Use SSE 指導教授 : 楊士萱 學 生 : 楊宗峰 日 期 :
Density and control Reproduction curve 劉耀仁. Density :濃度、密度 ► 1 號區是 High-Density 區、 2 號是 Middle-density 區、 3 號區是 Low- Density 區。 ► 計算反射率( R )或透射率( T )
1 第七章 植基於可調整式量化表及離散餘 弦轉換之浮水印技術. 2 Outlines 介紹 介紹 灰階浮水印藏入 灰階浮水印藏入 灰階浮水印取回 灰階浮水印取回 實驗結果 實驗結果.
Fractal Image Compression Lossy Looking for “local” similarities PIFS -- Partitioned Iteration Function system High compression ratio and high quality.
1 認識數位影像 什麼是數位影像 數位影像依其處存方式可分為兩大類 : 1. 向量影像( vector-based image ):影像圖案由一個 個物件所組成,每個物件可由一數學式表達 2. 點陣式影像( bit-mapped image ):影像圖案由像素 一個個排列而成.
數位暗房 講師:阿魯米. 常用軟體 1. 光影魔術手:簡單、方便、輕巧好用 2.Lightroom :管理照片方便容易 3.Photoshop :進階修圖技巧 示範軟體:光影魔術手.
多媒體技術與應用 實習作業 Part II. 實習作業 利用 Corel Paint Shop Pro X2 完成作業。 作業一:利用影像處理的技巧,讓這張影像變 的更清晰。
6 彩色影像處理 6.1 色彩基礎 6.2 色彩模式 6.3 假彩色影像處理 6.4 全彩色影像處理基本原理 6.5 色彩轉換
Fast vector quantization image coding by mean value predictive algorithm Authors: Yung-Gi Wu, Kuo-Lun Fan Source: Journal of Electronic Imaging 13(2),
STUDENT NAME: YEN-TING LIN STUDENT ID: Computational Photography Final Project Image effect machine.
IMAGE COMPRESSION USING BTC Presented By: Akash Agrawal Guided By: Prof.R.Welekar.
Final Project 黃啟承. High Dynamic Range 使真實世界場景的亮暗對比,正確呈現在影像上。 現今多使用不同曝光度的影像來產生 HDR image 。
Improvements to the JPEG-LS prediction scheme Authors: S. Bedi, E. A. Edirisinghe, and G. Grecos Source : Image and Vision Computing. Vol. 22, No. 1, 2004,
1 An Efficient VQ-based Data Hiding Scheme Using Voronoi Clustering Authors:Ming-Ni Wu, Puu-An Juang, and Yu-Chiang Li.
NTIT1 A chaos-based robust wavelet- domain watermarking algorithm Source: Chaos, Solitions and Fractals, Vol. 22, 2004, pp Authors: Zhao Dawei,
1 Information Hiding Based on Search Order Coding for VQ Indices Source: Pattern Recognition Letters, Vol.25, 2004, pp.1253 – 1261 Authors: Chin-Chen Chang,
1 資訊隱藏技術之研究 The Study of Information Hiding Mechanisms 指導教授: Chang, Chin-Chen ( 張真誠 ) 研究生: Lu, Tzu-Chuen ( 呂慈純 ) Department of Computer Science and Information.
Palette Partition Based Data Hiding for Color Images Yu-Chiang Li, Piyu Tsai, Chih-Hung Lin, Hsiu-Lien Yeh, and Chien-Ting Huang Speaker : Yu-Chiang Li.
Digital Image Processing, 2nd ed. © 2002 R. C. Gonzalez & R. E. Woods Chapter 3 Image Enhancement in the Spatial Domain Chapter.
A Fast LBG Codebook Training Algorithm for Vector Quantization Presented by 蔡進義.
Advisor: Chang, Chin-Chen Student: Chen, Chang-Chu
Image Compression using Vector Quantization
Data Mining and Its Applications to Image Processing
Chapter 3 向量量化編碼法.
A New Image Compression Scheme Based on Locally Adaptive Coding
Chair Professor Chin-Chen Chang Feng Chia University Aug. 2008
A Color Image Hiding Scheme Based on SMVQ and Modulo Operator
Chair Professor Chin-Chen Chang Feng Chia University
Advisor: Chin-Chen Chang1, 2 Student: Wen-Chuan Wu2
指導教授: Chang, Chin-Chen (張真誠)
A Data Hiding Scheme Based Upon Block Truncation Coding
第七章 資訊隱藏 張真誠 國立中正大學資訊工程研究所.
Hiding Data in a Color Palette Image with Hybrid Strategies
基於邊緣吻合向量量化編碼 法之資訊隱藏 張 真 誠 逢甲大學 講座教授 中正大學 榮譽教授、合聘教授 清華大學 合聘教授
Advisor: Chin-Chen Chang1, 2 Student: Yi-Pei Hsieh2
第 四 章 VQ 加速運算與編碼表壓縮 4-.
Advisor: Prof. Chin-Chen Chang (張真誠 教授) Student: Wei-Liang Tai (戴維良)
Reversible Data Hiding Scheme Using Two Steganographic Images
Dynamic embedding strategy of VQ-based information hiding approach
Chair Professor Chin-Chen Chang Feng Chia University
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
A Color Image Hiding Scheme Based on SMVQ and Modulo Operator
Hiding Information in VQ Index Tables with Reversibility
Information Hiding and Its Applications
Chair Professor Chin-Chen Chang (張真誠) National Tsing Hua University
Authors: Chin-Chen Chang, Yi-Hui Chen, and Chia-Chen Lin
A Virtual Image Cryptosystem Based upon Vector Quantization
A Robust and Recoverable Tamper Proofing Technique for Image Authentication Authors: Chin-Chen Chang & Kuo-Lung Hung Speaker : Chin-Chen Chang.
A Self-Reference Watermarking Scheme Based on Wet Paper Coding
De-clustering and Its Application to Steganography
A Data Hiding Scheme Based Upon Block Truncation Coding
Source: Pattern Recognition, Volume 40, Issue 2, February 2007, pp
Predictive Grayscale Image Coding Scheme Using VQ and BTC
Author :Ji-Hwei Horng (洪集輝) Professor National Quemoy University
資訊偽裝術 張真誠 講座教授 多媒體暨網路安全實驗室
An Image Quality Evaluation Method Based on Digital Watermarking
A New Image Compression Scheme Based on Locally Adaptive Coding
Presentation transcript:

影像強化(Image Enhancement) 影像強化:處理影像使其結果比原始影像更為適合某特定應用

影像對比反轉(Contrast reversal) PhotoImpact:影像調整反向 s = T(p) = 255 – p 41 214

對比擴展:調亮 PhotoImpact:相片亮度與對比 41 58

對比擴展:調暗 PhotoImpact:相片亮度與對比 41 12

直方圖 PhotoImpact:調整高亮度中間值陰影

Roberts 濾波器 銳化濾波器(Sharpening filter) 增強影像細微部分、被模糊的細節、邊緣 PhotoImpact:相片  清晰 強調邊緣

Roberts 濾波器 Gx 0=50-50 0=70-70 F 50 70 -20 -20

Roberts 濾波器 Gy 20=70-50 20=70-50 F 50 70 20 -20 -20 20 20

Roberts 濾波器 F’ = F + Gx + Gy Gy 50 70 20 -20 Gx F -20 70 90 50 30 10

Roberts 濾波器 F’ = F + Gx + Gy

Roberts 濾波器

Laplacian 濾波器 Lx 40=70+50+50+70-4*50 -40=70+80+50+50+70-4*70 F L 40 1 -4 40=70+50+50+70-4*50 -40=70+80+50+50+70-4*70 F L 50 70 -20 40 -40 -20 20 40 -40

Laplacian 濾波器 F’ = F - L

Vector Quantization (VQ) 7 7 9 10 Index table In this paper we based on vector quantization image compression scheme and Chinese remainder theorem to hide information. The concept of the VQ is try to encode an image into a index table. For example, assume there is a 4 by 4 image. And we want to compress the image by using VQ. First, the image is divided into 2 by 2 blocks, each block of size 2 by 2. Then each block maps a proper codeword from a codebook. If the codeword has the minimum Euclidean distance with the block, then the block is compressed by the index of the codeword. We can see the codeword 7 has the least distance with this block. So we use the corresponding index 7 to represent the block. After VQ compression we can obtain a set of index called a index table. Original Image VQ Encoder

Vector Quantization (VQ) Index table Reconstructed Image Then we can use a VQ decoder to reconstruct the original image. When we want to reconstruct the original image, we just map the index in the index table to the corresponding codeword in the codebook. And the block is replace by the codeword. Then we can obtain the reconstructed image. VQ Decoder

Vector Quantization (VQ) Image compression technique 15 20 10 18 50 40 60 25 110 125 113 140 30 210 220 230 240 100 70 3 7 9 255 13 15.68439 73.98649 227.1629 63.07932 432.4801 120.9091 13.34166 246.258 15 10 11 12 5 7 8 9 120 130 48 36 140 150 53 27 1 2 3 4 5 Image 6 7 Vector Quantization Encoder

VQ Encoding Index table Original Image Codebook … (120,155,…,80) 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (90,135,…,120) (100,125,…,150) … Index table Original Image (49,117,…,25) (50,42,…,98) (20,65,…,110) Codebook

PSNR 34 15 85 37 45 17 10 27 51 40 31 20 12 11 5 5 11 10 13 20 31 41 51 27 10 17 44 37 85 14 35 Image Stego-Image MSE = =0.4375 General, we use two measurements to judge the performance of a information hiding scheme. The first one is image quality of the stego image that is the similarity between the original cover image and the stego image. If the hiding process will not cause too much distortion, then the scheme is good. In this slide, we will show how to calculate the image quality of the stego image. Here are the cover image and the stego image. First we use mean square error (MSE) to calculate the difference between two images. The equation is shown here. Now, we compute the difference between two pixels in two image then squares the difference. The summation of the differences is divided by the total number of the pixels. Then we can get the average difference 0.4375. After that, we inverse the MSE to compute the PSNR value. In this example, the PSNR value of the stego image is 51.72. General speaking, people can not find any different between two image while the PSNR value is higher than 25. So 51.72 is very high PSNR value . Another measurement is information payload, which shows how many information can be embedded in a pixel. In LSB, each pixel can be used to hide one bit. So the payload of LSB is 1 bpp. PSNR (Peak Signal to Noise Ratio) = =51.72 Payload = 1 (bit per pixel, bpp)

Vector Quantization (VQ) Index table Then we can use a VQ decoder to reconstruct the original image. When we want to reconstruct the original image, we just map the index in the index table to the corresponding codeword in the codebook. And the block is replace by the codeword. Then we can obtain the reconstructed image. Reconstructed Image

import java.io.*; import java.io.InputStream; import java.io.OutputStream; public class PSNR { public static void main(String args[]) throws IOException DataInputStream in = new DataInputStream(new FileInputStream("Lena512.raw")); DataOutputStream ou = new DataOutputStream(new FileOutputStream("Lena512_v1.raw")); int imgSize = 512; int Lena [][] = new int [imgSize][imgSize]; int Lena_2 [][] = new int [imgSize][imgSize]; double mse = 0; for(int i=0;i<imgSize;i++) for(int j=0;j<imgSize;j++) Lena [i][j] = (int) in.readUnsignedByte() ; Lena_2 [i][j]= 255 - Lena [i][j]; ou.writeByte(Lena_2[i][j]); mse += (Lena [i][j] - Lena_2 [i][j]) *(Lena [i][j] - Lena_2 [i][j]) ; } mse = mse/imgSize/imgSize; double psnr = 10.0*(Math.log(255.0*255.0/mse)/Math.log(10.0)); System.out.print("psnr = " + psnr); in.close(); ou.close();