Multicore Processors (5)

Slides:



Advertisements
Similar presentations
III. Multicore Processors (5) Dezső Sima Spring 2007 (Ver. 2.1)  Dezső Sima, 2007.
Advertisements

4. Shared Memory Parallel Architectures 4.4. Multicore Architectures
Multicore Architectures Michael Gerndt. Development of Microprocessors Transistor capacity doubles every 18 months © Intel.
Slides Prepared from the CI-Tutor Courses at NCSA By S. Masoud Sadjadi School of Computing and Information Sciences Florida.
Instructor Notes We describe motivation for talking about underlying device architecture because device architecture is often avoided in conventional.
III. Multicore Processors (4) Dezső Sima Spring 2007 (Ver. 2.1)  Dezső Sima, 2007.
Cell Broadband Engine. INF5062, Carsten Griwodz & Pål Halvorsen University of Oslo Cell Broadband Engine Structure SPE PPE MIC EIB.
III. Multicore Processors (5) Dezső Sima Spring 2007 (Ver. 2.0)  Dezső Sima, 2007.
Computer Architecture & Organization
ELEC 6200, Fall 07, Oct 29 McPherson: Vector Processors1 Vector Processors Ryan McPherson ELEC 6200 Fall 2007.
CS 7810 Lecture 24 The Cell Processor H. Peter Hofstee Proceedings of HPCA-11 February 2005.
Computer Organization and Assembly language
III. Multicore Processors (3)
Microarchitecture of Superscalars (4) Decoding Dezső Sima Fall 2007 (Ver. 2.0)  Dezső Sima, 2007.
Programming the Cell Multiprocessor Işıl ÖZ. Outline Cell processor – Objectives – Design and architecture Programming the cell – Programming models CellSs.
Cell Architecture. Introduction The Cell concept was originally thought up by Sony Computer Entertainment inc. of Japan, for the PlayStation 3 The architecture.
Evaluation of Multi-core Architectures for Image Processing Algorithms Masters Thesis Presentation by Trupti Patil July 22, 2009.
Cell Broadband Engine Architecture Bardia Mahjour ENCM 515 March 2007 Bardia Mahjour ENCM 515 March 2007.
Agenda Performance highlights of Cell Target applications
2007 Sept 06SYSC 2001* - Fall SYSC2001-Ch1.ppt1 Computer Architecture & Organization  Instruction set, number of bits used for data representation,
Company LOGO High Performance Processors Miguel J. González Blanco Miguel A. Padilla Puig Felix Rivera Rivas.
Introduction to CMOS VLSI Design Lecture 22: Case Study: Intel Processors David Harris Harvey Mudd College Spring 2004.
Lynn Choi School of Electrical Engineering Microprocessor Microarchitecture The Past, Present, and Future of CPU Architecture.
Winter 2004 Class Representation For Advanced VLSI Course Instructor : Dr S.M.Fakhraie Presented by : Naser Sedaghati Major Reference : Design and Implementation.
A Gentler, Kinder Guide to the Multi-core Galaxy Prof. Hsien-Hsin S. Lee School of Electrical and Computer Engineering Georgia Tech Guest lecture for ECE4100/6100.
Intel’s Penryn Sima Dezső Fall 2007 Version nm quad-core -
1 The IBM Cell Processor – Architecture and On-Chip Communication Interconnect.
Kevin Eady Ben Plunkett Prateeksha Satyamoorthy.
Sam Sandbote CSE 8383 Advanced Computer Architecture The IBM Cell Architecture Sam Sandbote CSE 8383 Advanced Computer Architecture April 18, 2006.
High Performance Computing Group Feasibility Study of MPI Implementation on the Heterogeneous Multi-Core Cell BE TM Architecture Feasibility Study of MPI.
Aarul Jain CSE520, Advanced Computer Architecture Fall 2007.
Dezső Sima Fall 2007 (Ver. 2.1)  Dezső Sima, 2007 Multicore Processors (5)
© 2004 IBM Corporation Power Everywhere POWER5 Processor Update Mark Papermaster VP, Technology Development IBM Systems and Technology Group.
Sima Dezső 2007 őszi félév (Ver. 2.1)  Dezső Sima, 2007 Többmagos Processzorok (3)
Hardware Architecture
1/21 Cell Processor Systems Seminar Diana Palsetia (11/21/2006)
MAHARANA PRATAP COLLEGE OF TECHNOLOGY SEMINAR ON- COMPUTER PROCESSOR SUBJECT CODE: CS-307 Branch-CSE Sem- 3 rd SUBMITTED TO SUBMITTED BY.
● Cell Broadband Engine Architecture Processor ● Ryan Layer ● Ben Kreuter ● Michelle McDaniel ● Carrie Ruppar.
William Stallings Computer Organization and Architecture 8th Edition
William Stallings Computer Organization and Architecture 6th Edition
Itanium® 2 Processor Architecture
Manycore processors Sima Dezső October Version 6.2.
Microprocessor Microarchitecture Introduction
Presented by: Nick Kirchem Feb 13, 2004
Lynn Choi School of Electrical Engineering
Microarchitecture.
Lynn Choi School of Electrical Engineering
High Performance Computing on an IBM Cell Processor --- Bioinformatics
Cell Architecture.
Guide to Operating Systems, 5th Edition
HISTORY OF MICROPROCESSORS
Architecture & Organization 1
Phnom Penh International University (PPIU)
William Stallings Computer Organization and Architecture 7th Edition
HISTORY OF MICROPROCESSORS
9/18/2018 Accelerating IMA: A Processor Performance Comparison of the Internal Multiple Attenuation Algorithm Michael Perrone Mgr, Cell Solution Dept.,
Parallel Computers Today
Technology and Historical Perspective: A peek of the microprocessor Evolution 11/14/2018 cpeg323\Topic1a.ppt.
III. Multicore Processors (2)
Architecture & Organization 1
BIC 10503: COMPUTER ARCHITECTURE
11. Multicore Processors Dezső Sima Fall 2006  D. Sima, 2006.
Többmagos Processzorok (2)
INTRODUCTION TO COMPUTER ARCHITECTURE
Computer Evolution and Performance
Microarchitecture of Superscalars (4) Decoding
Hardware Overview System P & Power5.
William Stallings Computer Organization and Architecture 8th Edition
William Stallings Computer Organization and Architecture 8th Edition
Presentation transcript:

Multicore Processors (5) Dezső Sima Spring 2008 (Ver. 2.1)  Dezső Sima, 2008

10.3 IBM’s MC processors 10.3.1 POWER line 10.3.2 Cell BE

10.3 IBM’s MC processors 10.3.1 POWER line POWER4 10/2001 180 nm 11/2002 130 nm POWER5 5/2004 130 nm POWER5+ 10/2005 90 nm POWER6 5/2007 65 nm

10.3.1 Evolution of IBM’s major RISC lines Figure: The evolution of IBM’s major RISC lines

Figure : POWER4 chip logical view [3.6] Service Processor Core interface Unit (crossbar) Power On Reset Built-In-SelfTest Non-Cacheable Unit MultiChip Module Figure : POWER4 chip logical view [3.6]

10.3.1 POWER4 (2) Figure: Logical view of the L3 controller [3.5]

10.3.1 POWER4 (3) Figure: The memory cotroller of the POWER4 [3.5]

10.3.1 POWER4 (4) Figure: I/O controller of the POWER4 [3.5] Fabric

10.3.1 POWER4 (5) Figure: POWER4 chip [3.11]

10.3.1 POWER4 (6) Table: Main features of IBM’s dual-core POWER line Off-chip Mem. contr. L3 L2 1.44 MB/shared Size/allocation On-chip Implementation 32 MB Size Tags on-chip SCM1/MCM2 115/125 Tags on-chip, data off-chip 1.3 174 mtrs 412 mm2 180 nm 10/2001 DC POWER4 L3 size L3 impl. Power management Dual threaded Packaging TDP [W] fc [GHz] Nr. of transistors Die size Technology Introduced Dual/Quad-Core POWER line 1 SMC: Single Chip Module 2 MCM: Multi Chip Module 3 DCM: Dual Chip Module 4 DCM: Dual Core Module 5 QCM: Quad Core Module 6 DPM: Dynamic Power Management Table: Main features of IBM’s dual-core POWER line

Figure: New features of the POWER5+ [3.3]

10.3.1 POWER4+ (2) Table: Main features of IBM’s dual-core POWER line On-chip Off-chip Mem. contr. L3 L2 1.5 MB/shared 1.44 MB/shared Size/allocation Implementation 32 MB Size SCM1/MCM2 70 1.7 184 mtrs 380 mm2 130 nm 11/2002 DC POWER4+ Tags on-chip 115/125 Tags on-chip, data off-chip 1.3 174 mtrs 412 mm2 180 nm 10/2001 POWER4 L3 size L3 impl. Power management Dual threaded Packaging TDP [W] fc [GHz] Nr. of transistors Die size Technology Introduced Dual/Quad-Core POWER line 1 SMC: Single Chip Module 2 MCM: Multi Chip Module 3 DCM: Dual Chip Module 4 DCM: Dual Core Module 5 QCM: Quad Core Module 6 DPM: Dynamic Power Management Table: Main features of IBM’s dual-core POWER line

Figure 5.14: Contrasting POWER4 and POWER5 system structures [3.1] (Exclusive L3) Figure 5.14: Contrasting POWER4 and POWER5 system structures [3.1]

Figure: Block diagram of the POWER5 (1) [3.1]

Figure: Block diagram of the POWER5 (2) [3.12]

Figure: Floorplan of the POWER5 [3.13]

10.3.1 POWER5 (6) POWER4 POWER5 180 nm, 412 mm2 130 nm, 389 mm2 (~3 % enlarged) Figure: Contrasting the floor plans of the POWER4 and POWER5 dies [3.11], [3.13]

10.3.1 POWER5 (7) POWER5+ Dual-Core Module Figure: Packaging alternatives of the POWER4/5 processors Source: Partridge R. and Ghatpande S., IBM Introduces POWER5+ and Quad-Core Modules in System p5,” Tech Trends Monthly, Nov./Dec. 2005,

10.3.1 POWER5 (8) POWER4 MCM Photo 32-way System Showing 4 MCMs and L3 Cache                                                                                                                      Figure: Quad–Chip POWER4 module (MCM) and a 32-way POWER4 system [3.7]

10.3.1 POWER5 (10) Figure: Photos of Dual-Chip Modules (DCMs) and Multi-Chip Modules (MCM) of the POWER5 [3.7]

Figure: The Multi-chip module of the POWER5 [3.10]

10.3.1 POWER5 (12) Table: Main features of IBM’s dual-core POWER line Dual/Quad-Core DC DC DC Introduced 10/2001 11/2002 5/2004 Technology 180 nm 130 nm 130 nm Die size 412 mm2 380 mm2 389 mm2 Nr. of transistors 174 mtrs 184 mtrs 276 mtrs fc [GHz] 1.3 1.7 1.65/1.9 L2 Size/allocation 1.44 MB/shared 1.5 MB/shared 1.9 MB/shared Implementation On-chip On-chip On-chip L3 Size 32 MB 32 MB 36 MB Implementation Tags on-chip, data off-chip Mem. contr. Off-chip On-chip On-chip TDP [W] 115/125 70 80 (est) Packaging SCM1/MCM2 SCM1/MCM2 DCM3/MCM2 Dual threaded Power management DPM6 L3 impl. Tags on-chip Tags on-chip L3 size 32 MB 36 MB 1 SMC: Single Chip Module 2 MCM: Multi Chip Module 3 DCM: Dual Chip Module 4 DCM: Dual Core Module 5 QCM: Quad Core Module 6 DPM: Dynamic Power Management Table: Main features of IBM’s dual-core POWER line

Figure: Block diagram of the POWER5+ Source: Vetter S. et al., IBM System p5 Quad-Core Module Based on POWER5+ Technology,” Redbooks paper, IBM Corp. 2006, http://www.redbooks.ibm.com/redpapers/pdfs/redp4150.pdf

10.3.1 POWER5 (9) Figure.: Interpretation of Dual-Chip Modules (DCMs) and Multi-Chip Modules (MCM) of the POWER5 [3.7]

10.3.1 POWER5+ (2) Figure: Dual-Core Modules (DCMs) and Quad-Core Modules (QCM) of the POWER5+ [3.14]

10.3.1 POWER5+ (3) On-chip Off-chip Mem. contr. L3 L2 1.9 MB/shared 1.5 MB/shared 1.44 MB/shared Size/allocation Implementation 36 MB 32 MB Size Tags on-chip DPM6 DCM3/MCM2 80 (est) 1.65/1.9 276 mtrs 389 mm2 130 nm 5/2004 DC POWER5 SCM1/MCM2 70 1.7 184 mtrs 380 mm2 11/2002 POWER4+ 115/125 Tags on-chip, data off-chip 1.3 174 mtrs 412 mm2 180 nm 10/2001 POWER4 DCM4/QCM5 1.92 230 mm2 90 nm 10/2005 POWER5+ L3 size L3 impl. Power management Dual threaded Packaging TDP [W] fc [GHz] Nr. of transistors Die size Technology Introduced Dual/Quad-Core POWER line 10.3 1 SMC: Single Chip Module 2 MCM: Multi Chip Module 3 DCM: Dual Chip Module 4 DCM: Dual Core Module 5 QCM: Quad Core Module 6 DPM: Dynamic Power Management Table: Main features of IBM’s dual-core POWER line

10.3.1 POWER6 (1) POWER6’s main features [3.15b] ultra-high frequency (4.7 = GHz) dual core dual threaded SMT 13 FO4 design private 4 MB L2 caches partially integrated 32 MB L3 victim cache minimization of excessive circuitry to reduce dissipation (modest speculation and ooo-execution, no renaming) push many fuctions of decoding and instruction grouping into predecoding (4 stages) (added L2 latency causes 0.5 % loss for each stage whereas each added stage after the I-cache access results in about 1 % loss per stage) increased dispath and completion bandwidth (to 7 instructions per thread) L2 cache, SMP interconnect, parts of the memory and I/O subsystem operate at 0.5 fc, L3 operates at one-quarter, the memory. controller up to 3.2 GHz. (In the POWER5 the L2 operates at fc,the remaining components at 0.5 fc.) since L2 operates at 0.5 fc, the width of the load and store interfaces was doubled.

10.3.1 POWER6 (2) POWER6 (in the IBM System p570) had at intro the highest figures for SPECint2006, SPECfp2006, SPECjbb2005 (Java performance) and TPC-C (transaction performance).

Hardware support of decimal arithmetic 10.3.1 POWER6 (3) POWER6 POWER5+ Hardware support of decimal arithmetic Figure: Contrasting the block diagrams of the POWER5 and POWER6 processors [3.15a]

10.3.1 POWER6 (4) Figure: Comparing the POWER5 and POWER6 processors [3.15b]

10.3.1 POWER6 (5) Table: Throughput comparison POWER6 vs POWER5 [3.15b]

10.3.1 POWER6 (6) [3.15b]

10.3.1 POWER6 (7) Figure: The internal pipelines of the POWER6 and the POWER5 [3.15b]

10.3.1 POWER6 (8) Figure: First level nodal topology of the POWER6 vs POWER5 [3.15b]

10.3.1 POWER6 (9) Figure: Second level topology of the POWER5 vs POWER6 [3.15b]

10.3.1 POWER6 (10) Table: POWER6 processor functional signal I/O-pin comparison for various system types [3.15b]

10.3.1 POWER6 (11) Figure: Micrograph of the POWER6 [3.15b]

10.3.1 POWER6 (12) Table: Main features of IBM’s dual-core POWER line On-chip Off-chip Mem. contr. L3 L2 2*4 MB/private 1.9 MB/shared 1.5 MB/shared 1.44 MB/shared Size/allocation Implementation 32 MB 36 MB Size Tags on-chip DPM6 DCM3/MCM2 80 (est) 1.65/1.9 276 mtrs 389 mm2 130 nm 5/2004 DC POWER5 SCM1/MCM2 70 1.7 184 mtrs 380 mm2 11/2002 POWER4+ 115/125 Tags on-chip, data off-chip 1.3 174 mtrs 412 mm2 180 nm 10/2001 POWER4 DCM4/QCM5 1.92 230 mm2 90 nm 10/2005 POWER5+ L3 impl. n.a. Power management Dual threaded Packaging ~100 TDP [W] 4.7 fc [GHz] 790 mtrs Nr. of transistors 341 mm2 Die size 65 nm Technology 5/2007 Introduced Dual/Quad-Core POWER6 POWER line On-chip 1 SMC: Single Chip Module 2 MCM: Multi Chip Module 3 DCM: Dual Chip Module 4 DCM: Dual Core Module 5 QCM: Quad Core Module 6 DPM: Dynamic Power Management Table: Main features of IBM’s dual-core POWER line

10.3 IBM’s MC processors 10.3.2 Cell BE Cell BE 2/2006 90 nm

10.3.2 Cell BE (1) Figure: The history and development cost of the Cell BE [3.17], [3.22]

10.3.2 Cell BE (2) AUC: Atomic Update Cache BIC: Bus Interface Contr. EIB: Element Interface Bus LS: Local Store of 256 KB MFC: Memory Flow Controller MIC: Memory Interface Contr. PPE: Power Processing Element PXU: POWER Execution Unit SMF: Synergistic Memory Flow Unit SPU: Synergistic Processor Unit SXU: Synergistic Execution Unit XDR: Rambus DRAM Figure: Block diagram of the Cell BE [3.19]

Design parameters of the Cell BE: PPE: dual-threaded > 200 GFLOPS (SP) > 20 GFLOPS (DP) > 25 GB/s memory BW > 75 GB/s I/O BW > 300 GB/s EIB BW fc > 4 GHz (lab) Figure: Main design parameters of the Cell BE [3.28]

Figure : Cell SPE architecture [3.16] 10.3.2 Cell BE (4) Figure : Cell SPE architecture [3.16]

10.3.2 Cell BE (5) Figure: Block diagram of the SPE [3.19]

10.3.2 Cell BE (6) Figure: Pipeline stages of the Cell BE [3.19]

10.3.2 Cell BE (7) Figure: Floor plan of a single SPE [3.19]

10.3.2 Cell BE (8) Principle of operation of the Element Interface Bus (EIB) [3.23]

10.3.2 Cell BE (9) Figure: The Element Interface Bus EIB) [3.19]

10.3.2 Cell BE (10) Figure: The Synergistic Memory Flow unit (SMF) [3.19]

Figure: PPE block diagram [3.28]

10.3.2 Cell BE (11) 235 mm2 241 mtrs Figure: Floor plan of the Cell BE processor [3.19]

10.3.2 Cell BE (12) Table: Main features of the IBM’s Cell BE L3 On-chip Memory controller Ring based Interconnection network Up to 75 MB/s I/O bandwidth PPE: 2-way SPE: Multithreading 95 W @ 3GHz TDP [W] 25 GB/s Memory bandwidth PPE: 512 KB SPE: 256 KB Local Store (128*128 bit) L2 3.0/3.2 fc [GHz] 234 mtrs Nr. of transistors 221 mm2 Die size 90 nm Technology 9/2006 (in the QS20 BladeCenter) Introduction PPE: 64-bit RISC SPE: Dual-issue 32-bit SIMD with 128 bit capability Cores PowerPC 2.02 Architecture Heterogeneous 1xPPE, 8*SPE Implementation Cell BE Series Table: Main features of the IBM’s Cell BE

10.3.2 Cell BE (13) Figure: Cell BE Blade Roadmap Source: Brochard L., A Cell History,” Cell Workshop, April, 2006 http://www.irisa.fr/orap/Constructeurs/Cell/Cell%20Short%20Intro%20Luigi.pdf

10.3.2 Cell BE (14) Figure: Roadmap of the Cell BE Source: Hofstee H. P., „Real-time Superconputing and Technology for Games and Entertainment,” 2006, http://www.cercs.gatech.edu/docs/SC06_Cell_111606.pdf

10.3 Literature (1) POWER4, POWER4+ POWER5, POWER5+ [3.1] Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/ [3.2] DeMone P., „Sizing Up the Super Heavyweights,” Real Word Technologies, Sept. 2004, http://h21007.www2.hp.com/dspp/files/unprotected/Itanium/sizingsuperheavys.pdf [3.3] Grassl C., „New IBM Components for HPCx”, Dec. 2003, http://www.hpcx.ac.uk/about/events/annual2003/Grassl.pdf [3.4] Krevell K., „IBM’s POWER4 Unveiling Continuues”, Microprocessor Report, Nov. 20. 2000, pp- 1-4 [3.5] Tendler, J.M., Dodson, S., Fields S., Le H., Sinharoy B.: Power4 System Microarchitecture, IBM Server, Technical White Paper, October 2001, http://www-03.ibm.coom/servers/eserver/pseries/hardware/whitepapers/power4.pdf [3.6] Tendler, J.M., Dodson, S., Fields S., Le H., Sinharoy B.: Power4 System Microarchitecture,, IBM J. Res. & Dev. Vol. 46, No. 1, Jan. 2002, pp. 5-25, http://www.research.ibm.com/journal/rd/461/tendler.pdf POWER5, POWER5+ [3.7] Barney B., „IBM POWER Systems Overview”, Livermore Computing, 2006, http://www.llnl.gov/computing/tutorials/ibm_sp/ [3.8] DeMone P., „Sizing Up the Super Heavyweights,” Real Word Technologies, Sept. 2004, http://h21007.www2.hp.com/dspp/files/unprotected/Itanium/sizingsuperheavys.pdf [3.9] Grassl C., „New IBM Components for HPCx”, Dec. 2003, http://www.hpcx.ac.uk/about/events/annual2003/Grassl.pdf [3.10] Kalla R., „IBM’s POWER5 Microprocessor Design and Methodology,” 2003, www-csl.csres.utexas.edu/users/billmark/teach/cs352-05-spring/lectures/Lecture22-RonKallaIBM.pdf

10.3 Literature (2) POWER5, POWER5+ (cont.) POWER6 Cell BE [3.11] Kalla R., Sinharoy B., Tendler J.: Simultaneous Multi-threading Implementation in Power5 – IBM’s Next Generation POWER Microprocessor, 2003 http://www.hotchips.org/archives/hc15/3_Tue/11.ibm.pdf [3.12] Krevell K., „POWER5 Tops on Bandwidth”, Microprocessor Report, Dec. 2003 http://studies.ac.upc.edu/ETSETB/SEGPAR/microprocessors/power5%20(2)%20(mpr).pdf [3.13] Shinharoy B., Kalla R.N., Tendler J.M., Eickenmeyer R.J., Joyner J.B., „POWER5 system microarchitecture,” IBM J. R&D, Vol. 49, No. 4/5, 2005, pp. 505-521 [3.14] Vetter S. et al., IBM System p5 Quad-Core Module Based on POWER5+ Technology,” Redbooks paper, IBM Corp. 2006, http://www.redbooks.ibm.com/redpapers/pdfs/redp4150.pdf POWER6 [3.15a] Kanter D., „IBM Previews the Power6,” Oct. 2006, dkanter@realwordtech.com [3.15b] Le. H. Q. et al., „IBM POWER6 microarchitecture,” IBM J. R&D, Vol. 51, No. 6, 2007. pp 639-662 Cell BE [3.16] Blachford N.: „Cell Architecture Explained Version 2”, http://www.blachford.info/computer/Cell/Cell1_v2.html [3.17] Brochard L., A Cell History,” Cell Workshop, April, 2006 http://www.irisa.fr/orap/Constructeurs/Cell/Cell%20Short%20Intro%20Luigi.pdf [3.18] Day M. and Hofstee P., „Hardware and Software Architectures for the Cell Broadband Engine processor, ” CODES, Sept. 2006, http://www.casesconference.org/cases2005/pdf/Cell-tutorial.pdf [3.19] Gshwind M., „Chip Multiprocessing and the Cell BE,” ACM Computing Frontiers, 2006, http://beatys1.mscd.edu/compfront//2006/cf06-gschwind.pdf

10.3 Literature (3) Cell BE (cont.) [3.20] Gschwind M., Hofstee H. P., Flachs B. K., Hophkins M., Watanabe Y., Yamazaki T „Synergistic Processing in Cell's Multicore Architecture,” IEEE Micro, Vol. 26, No. 2, 2006, pp. 10-24 [3.21] Hofstee H. P., „Real-time Superconputing and Technology for Games and Entertainment,” 2006, http://www.cercs.gatech.edu/docs/SC06_Cell_111606.pdf [3.22] Hofstee H. P., „Cell today and tomorrow,” 2005, http://www.stanford.edu/class/ee380/Abstracts/Cell_060222.pdf [3.23] Keable C., „And we also have hardware...” 17th Machine Evaluation Workshop, Dec. 2006, http://www.cse.clrc.ac.uk/disco/mew17/talks/Keable_IBM_MEW17.pdf [3.24] Krolak D., „Unleashing the Cell Broadband Engine Processor,” MPR Fall Proc. Forum, Nov. 2005, http://www-128.ibm.com/developerworks/power/library/pa-fpfeib/?ca=dgr-lnxwCellConnects [3.25] Krewell K., „Cell Moves Into The Limelight,” Microprocessor Report, Febr. 14 2005, pp. 1-9 [3.26] Solie, D., „Technology Trends Presentation,” Power Symposium, Aug. 2006, http://www-03.ibm.com/procurement/proweb.nsf/objectdocswebview/ file14+-+darryl+solie+-+ibm+power+symposium+presentation/$file/ 14+-+darryl+solie-ibm-power+symposium+presentation+v2.pdf [3.27] - „Cell Broadband Engine processor – based systems,” White Paper, IBM Corp., 2006 [3.28] - „Cell Architecture”, Course Code L1T1H1-10, 2006, http://www.power.org/resources/devcorner/cellcorner/CellTraining_Track1/CourseCode_L1T1H1-10_ CellArchitecture.pdf