Syntheses of High-spin Molecules

Slides:



Advertisements
Similar presentations
157 T INTERNAL MAGNETIC FIELD IN Fe[C(SiMe 3 ) 3 ] 2 COMPOUND AT 20K Ernő Kuzmann, 1,2 Roland Szalay, 2 Attila Vértes, 1,2 Zoltán Homonnay, 2 Imre Pápai,
Advertisements

Inorganic Chemistry Laboratory
ELECTRONIC STRUCTURE OF STRONGLY CORRELATED SYSTEMS
Physical Methods in Inorganic Chemistry or How do we know what we made
Coulomb versus spin-orbit interaction in carbon-nanotube quantum dots Andrea Secchi and Massimo Rontani CNR-INFM Research Center S3 and University of Modena,
Schedule Lecture 1: Electronic absorption spectroscopy Jahn-Teller effect and the spectra of d1, d4, d6 and d9 ions Lecture 2: Interpreting electronic.
Labile and inert metal ions - Kinetic effects
Dynamics and thermodynamics of quantum spins at low temperature Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics & Astronomy TRIUMF.
Do the chemists know how to align the spins of electrons in molecules, parallel or antiparallel ?
6  ligands x 2e each 12  bonding e “ligand character” “d 0 -d 10 electrons” non bonding anti bonding “metal character” ML 6  -only bonding The bonding.
Magnetism in Chemistry. General concepts There are three principal origins for the magnetic moment of a free atom: The spins of the electrons. Unpaired.
1 Electronic (UV-visible) Spectroscopy | Electronic | XPS UPS UV-visible.
Spin Tunneling and Inversion Symmetry E NRIQUE DEL B ARCO Department of Physics – UCF Orlando QCPS II Vancouver.
Coordination Chemistry Bonding in transition-metal complexes.
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
End result is that solution phase absorptions at room temperature are almost always broad because of the various number of photons (with different energies)
Lecture 19: Magnetic properties and the Nephelauxetic effect sample south thermometer Gouy Tube electromagnet balance north connection to balance left:
Introduction to Single Molecular Magnet
Crystal Field Theory The relationship between colors and complex metal ions.
Coordination Chemistry:
Coordination Chemistry II: Bonding
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
Ligand Substitution Reactions:
Contents First Semester Ch 1. Introduction to Inorganic Chemistry Ch 2. Atomic Structure Ch 3. Simple Bonding Theory Ch 4. Symmetry and Group Theory Ch.
Crystal Field Theory, Electronic Spectra and MO of Coordination Complexes Or why I decided to become an inorganic chemist or Ohhh!!! The Colors!!!
Georg-August-Universitaet Goettingen Tobias N. Wassermann Institute of Physical Chemistry Goettingen 19/06/ st Ohio State University Symposium on.
F. Branzoli ¶, P. Carretta ¶, M. Filibian ¶, S. Klytaksaya ‡ and M. Ruben ‡ ¶ Department of Physics "A.Volta", University of Pavia-CNISM, Via Bassi 6,
Lecture 18. d-d spectra and MO theory:
Dynamics of the nuclear spin bath in molecular nanomagnets: a test for decoherence Andrea Morello Kamerlingh Onnes Laboratory Leiden University UBC Physics.
Miljanić Group Meeting / Literature University of Houston ▪ Houston, TX ▪ January 9 th 2009 Jaebum Lim A Nanoball Switch.
Photoelectron Spectroscopy Study of Ta 2 B 6 − : A Hexagonal Bipyramidal Cluster Tian Jian, Wei-Li Li, Constantin Romanescu, Lai-Sheng Wang Department.
Coupling Single Molecule Magnets to Ferromagnetic Substrates.
CHEM 522 Chapter 01 Introduction. Transition Metal Organometallic Chemistry Organic versus inorganic chemistry Transition metals –Oxidation state –d orbitals.
Coordination Polymers of Silver Arienne King Chem 765: Advanced Polymer Chemistry October 30, 2000.
Co-ordination Chemistry Theories of Bonding in Co-ordination compound. 1. Valence Bond Theory 2. Crystal Field Theory 3. Molecular Orbital Theory.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
Slide 2/12 Schedule Lecture 4: Re-cap Lecture 5:  -Acceptor Ligands and Biology N 2, CO, N 2 and O 2 complexes Lecture 6: M-M bonding Multiple bonds.
Single Molecular Magnets
Helical Spin Order in SrFeO 3 and BaFeO 3 Zhi Li Yukawa Institute for Theoretical Physics (YITP) Collaborator: Robert Laskowski (Vienna Univ.) Toshiaki.
Single-Molecule Magnets: A Molecular Approach to Nanomagnetism George Christou Department of Chemistry, University of Florida Gainesville, FL ,
Ligand field theory considers the effect of different ligand environments (ligand fields) on the energies of the d- orbitals. The energies of the d orbitals.
Syntheses of high-spin and cluster molecules Hiroki OSHIO (University of Tsukuba) Syntheses and Magnetic measurements Dr. M. Nihei, A. Yoshida, K. Koizumi,
M. Ueda, T. Yamasaki, and S. Maegawa Kyoto University Magnetic resonance of Fe8 at low temperatures in the transverse field.
NMR study of a mixed-metal molecular magnet Yutaka FUJII (University of Fukui) Contents  Introduction (Magnetic properties)  Experimental results  1.
Spin-lattice relaxation of individual lanthanide ions via quantum tunneling Fernando LUIS Orlando December 20 th 2010 Quantum Coherent Properties of Spins-III.
Lineshape analysis of CH3F-(ortho-H2)n absorption spectra in 3000 cm-1 region in solid para-H2 Yuki Miyamoto Graduate School of Natural Science and Technology,
Coordination Chemistry: Bonding Theories
Coordination Chemistry Bonding in transition-metal complexes
SINGLE MOLECULE MAGNETS: HISTORY AND MODERN TRENDS
The Application of Redox-Active Ligands in Homogeneous Catalysis
Spin Transitions in Trigonal Bipyramid Clusters of Group 8 Metal Ions Catalina Achim, Department of Chemistry, Carnegie Mellon University The current.
Electronic spectra of transition metal complexes
Magnetic properties and the Nephelauxetic effect
Promotion of Tunneling via Dissipative Molecular Bridges
Molecular Magnetic Switches
Time dependent magnetization in CoxFe3-xO4 nanocrystals
Andrew Gomella1,2, S. Yoshii,2 T. Zenmoto,2 M. Yasui,2 M. Hayashi,2 G
Leah G. Dodson, Michael C. Thompson, J. Mathias Weber
Magnetism and Magnetic Materials
Laser spectroscopy and ab initio calculations on TaF
Density functional theory calculations on
Hammett Parameters with Calculated Values of J
Magnetic Properties of Coordination Compounds
Physical Chemistry Chapter V Polyatomic Molecular Structure 2019/4/10
Structure and magnetic properties of Mn11Cr with a half-integer spin
Spin-triplet molecule inside carbon nanotube
Hiroyuki Nojiri, Department of Physics, Okayama University
CHEM 251 INORGANIC CHEMISTRY Chapter 4.
Harnessing Mixed Anion Materials for Novel Magnetic Properties
Diels-Alder in Aqueous Molecular Hosts:
Presentation transcript:

Syntheses of High-spin Molecules H. Oshio Department of Chemistry, University of Tsukuba, Japan Workshop on the Quantum Dynamics of Molecular Magnets December 1 -4, 2002 Awaji Yumebutai International Conference Center

Single Molecule Magnets [Mn(III,IV)12O12(O2CR)16(H2O)] (S = 10) (T. Lis, 1980) [Mn(III,IV)12O12(O2CR)16(H2O)4]- (S = 19/2) [Mn(III,IV)4O3X(O2CMe)(dbm)3] (S = 9/2) [Fe(III)8O2(OH)12(tacn)6]8+ (S = 10) [V(III)4O2(O2CR)7(L-L)]+ (S = 3) D. N. Hendrickson, G. Christou, and D. Gatteschi

Single Molecule Magnet (SMM) Hext DE -Hext -Hext Magnetization Direction DE = |D|Sz2 DE :Energy barrier to reorientate between two possible directions of magnetizations D : Zero Field Splitting parameters SMM

Quantum Spin Tunneling Hext = 0 Tunneling Hext No Tunneling

Strategy for the High-spin Molecule Ferromagnetic Interactions by LMCT interactions AGK Theory P. W. Anderson (1959), J. B. Goodenough (1958), J. Kanamori (1959)

Cyanide Bridged Mixed Metal system [Fe2Cu2(m-CN) 4(bpy) 6] and [Fe2Cu2(m-CN) 4(bpy) 4(Rad) 2] [FeII2CuII2] [FeIII2CuII2] [FeIII2CuII2Rad2] dp dp dp ds ds ds ds ds dp ds dp dp S = 2 S = 3 S = 1/2x2 Inorg. Chem.

Strategy for the High-spin Molecule Ferromagnetic Interactions by LMCT interactions

High-spin Cluster Orthogonal arrangements of the magnetic orbitals

Bridging Ligands

Cu(II) cube of [Cu4(hsae)4]·2H2O J = 21 cm-1 Monoclinic C2/2 a = 25.355 (4) Å, b = 9.211(4) Å, c = 21.460(4) Å = 98.23(1)°, V = 4960(2) Å3, Z = 4 R = 0.04, Rw = 0.032 Angew. Chem. Int. Ed. Engl. 1977, 36, 2673.

Ni(II) Cube of [Ni4(sae)4(MeOH)4] Monoclinic P21/c a = 9.4504 (5) Å, b = 9.8801(5) Å, c = 15.4883(8) Å = 98.310(1)°, V = 1431.9(1) Å3, Z = 2 R1 = 0.0206, wR2 = 0.0553 Chem. Lett. 2002, 844.

Mn(II) Cube of [Mn4(sap)4(MeOH)4] g = 2.141 J = -1.6 cm-1 Tetragonal I41/a a = 16.8773 (6) Å, c =17.6920(16) Å V = 5039.4(5) Å3, Z = 4 R1 = 0.0339, wR2 = 0.1052 Chem. Lett. 2002, 1016.

Fe(II) Cube of [FeII4(sae)4(MeOH)4] triclinic P1- a = 13.3625(7) Å, b = 13.7572(7) Å, c = 14.2004(7) Å = 66.538(1)°, b = 74.973(1)°, g = 71.105(1), V = 2239.92(1) Å3, Z = 2 R1 = 0.0477, wR2 = 0.0959 J. Am. Chem. Soc. 2000. 122. 12603.

AC measurements of [FeII4(sae)4(MeOH)4]

Relaxation in [Fe4(sae)4(MeOH)4] with S =8 Ground State t = t0exp(DE/kT) t = 1/(2pnAC) nAC : Freq. of AC Field T : Temp. of max. in c” DE = |D|S2 = 64|D|

Summary Compounds in red are SMM. g C [emu mol-1 K]  [K] D [cm-1] E TB [Fe4(sap)4(MeO)4]·2H2O 2.261 15.43 9.56 +0.8 [Fe4(5-Br-sap)4(MeO)4] 2.227 14.86 9.32 +0.80 [Fe4(3-MeO-sap)4(MeO)4]·2MeOH 2.243 15.27 12.59 +1.15 [Fe4(sapd)4]·4MeOH·2H2O 2.180 14.29 4.57 +1.10 [Fe4(sae)4(MeO)4] 2.126 15.55 15.98 -0.76 28 1.1 [Fe4(5-Br-sae)4(MeO)4]·MeOH 2.209 14.57 15.68 -0.66 30 1.2 [Fe4(3,5-Cl2-sae)4(MeO)4] 2.120 13.44 13.99 -0.67 26 Compounds in red are SMM. The g, C, and  values were obtained from temperature dependence of the magnetic susceptibility. D values were estimated by the analyses of magnetization data at 1.8 K, supposing the only S = 8 being populated. E and TB values were estimated from the ac magnetic susceptibility measurements.

[FeII6FeIII(5-MeO-saeH)5 (5-MeO-sae)(m3-OMe)6] 7FeCl2·4H2O + 6(5-MeO-saeH2) + 1/21(t-Bu4N)(MnO4)  m2-phenoxo bridges S = 29/2 and D = +0.53 cm-1

Summary SMM of Ferrous Cubes Double Exchange System in a Fe(III)-Fe(II)-Fe(III) System Multinuclear Mixed Valent Fe(II,III) Systems Dinuclear Mn(III)-Cu(II) SMM