BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,

Slides:



Advertisements
Similar presentations
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Advertisements

CHIRPED-PULSE FOURIER-TRANSFORM MICROWAVE SPECTROSCOPY OF THE PROTOTYPICAL C-H…π INTERACTION: THE BENZENE…ACETYLENE WEAKLY BOUND DIMER Nathan W. Ulrich,
1 THz vibration-rotation-tunneling (VRT) spectroscopy of the water (D 2 O) 3 trimer : --- the 2.94THz torsional band L. K. Takahashi, W. Lin, E. Lee, F.
Microwave spectroscopy of 2-furancarboxylic acid Roman A. Motiyenko, Manuel Goubet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University Lille.
Microwave spectrum of furfuryl alcohol Roman A. Motiyenko, Manuel Goubet, Thérèse R. Huet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University.
MONITORING REACTION PRODUCTS USING CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY Derek S. Frank, Daniel A. Obenchain, Wei Lin, Stewart E. Novick,
ROTATIONAL SPECTRA OF THE TRIFLUORO ETHANOL (TFE) -WATER CLUSTERS AND THE TFE DIMERS Javix Thomas and Yunjie Xu Department of Chemistry, University of.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
Gas Phase Conformational Distributions
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
Millimeter Wave Spectrum of Iso-Propanol A. MAEDA, I. MEDVEDEV, E. HERBST and F. C. DE LUCIA Department of Physics, The Ohio State University.
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Microwave Spectroscopic Investigations of the C—H…  Containing Complexes CH 2 F 2 …Propyne and CH 2 ClF…Propyne Rebecca A. Peebles, Sean A. Peebles, Cori.
Physique des Lasers, Atomes et Molécules
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Determination of Torsional Barriers of Itaconic Acid and N-acetylethanolamine using Chirped-pulsed FTMW Spectroscopy. Josiah R. Bailey, Timothy J. McMahon,
Enantiomer Identification in Chiral Mixtures with Broadband Microwave Spectroscopy V. Alvin Shubert a, David Schmitz a, Chris Medcraft a, Anna Krin a,
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Microwave Spectrum of the Ethanol-Water Dimer
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
Microwave and Ab Initio Investigations of CHCl 2 F-OCS and Related Hydrochlorofluorocarbon Complexes Rebecca A. Peebles and Amanda L. Steber Department.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Max Planck Institute for the Structure and Dynamics of Matter
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
AMANDA L. STEBER, MARIYAM FATIMA, CRISTÓBAL PÉREZ, and MELANIE SCHNELL
The microwave spectroscopy study of 1,2-dimethoxyethane
Juliane Heitkämper, John C Mullaney, Nick Walker
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Rebecca A. Peebles,a Prashansa B. Kannangara,a Brooks H
Structure and tunneling dynamics of gauche-1,3-butadiene
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Characterisation and Control of Cold Chiral Compounds
Carlos Cabezas and Yasuki Endo
MARIYAM FATIMA 1,2,3, CRISTÓBAL PÉREZ1,2,3 , MELANIE SCHNELL 1,2,3
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
L. Evangelisti,a,c C. Perez,b,c B.H. Patec
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
Characterization of Intermolecular Interactions in the
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
Chirped pulse rotational spectroscopy
Chirped Pulse Microwave Spectroscopy on Methyl Butanoate
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
How methyl tops talk with each other
Microwave spectra of 1- and 2-bromobutane
CHIRALITY DETERMINATION FROM PULSED-JET FOURIER TRANSFORM
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
The rotational spectrum of the urea isocyanic acid complex
The Conformational Landscape of Serinol
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Michal M. Serafin, Sean A. Peebles
by William T. S. Cole, James D. Farrell, David J. Wales, and Richard J
John Mullaney Newcastle University
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
The Rotational Spectrum and Conformational Structures of Methyl Valerate LAM NGUYEN Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA)
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany

Non-Covalent Interactions Water Amino Acid Guanine Cytosine

Molecule of Interest : Camphor-Alcohol System Z. Kisiel et al., Phys. Chem. Chem. Phys. 5(2003), 820 Side view: Camphor Camphor Methanol Ethanol

Camphor-Water System 2 isomers for camphor-water were observed using rotational spectroscopy 3 1 2 3 possibilities where water can form a complex with camphor. Isomer 1 Isomer 2 Camphor-(H2O) C.Pérez et al., J. Phys. Chem. Lett., 7 (1) (2016), 154–160

Chirped Pulse Microwave Spectroscopy in Hamburg Sample introduction 2-8 GHz 20 kHz linewidth Microwave Horn Antenna (Receiver) Supersonic Expansions Microwave Horn Antenna (Emitter) Backing pressure of neon: 3.2 bar Temperature for camphor: 100 ° C

PART 1: CAMPHOR-METHANOL

Camphor-Methanol: Ab initio Results ∆E = 0 kJ/mol ∆E ≈ 1 kJ/mol Level of theory: B3LYP-D3/aug-cc-pvtz

Camphor-Methanol: Experimental Spectrum Isomer 1

Camphor-Methanol: Rotational Constants Isomer 1 ∆E=0 kJ/mol B3LYP-D3 Dipole Moment (D) A (MHz) 1337.09 3.3 B (MHz) 441.38 0.4 C (MHz) 429.50 -0.1 Isomer 2 B3LYP-D3 Dipole Moment (D) A (MHz) 1341.61 -4.0 B (MHz) 450.59 1.0 C (MHz) 434.39 0.2 ∆E=1 kJ/mol

Camphor-Methanol: Splitting Patterns

Internal Rotation in Methanol Internal rotation barrier height E Internal rotation barrier = 3.2 kJ/mol A A E E A

Internal Axis Method x Internal rotation axis z y XIAM Program: uses internal axis method predict and fits the rotational spectrum of an asymmetric molecule having internal rotors Internal rotation barrier = 2.4534(21) kJ/mol   H.Hartwig et al., Z. Naturforsch 51a (1996), 923-932

Camphor-Methanol: Results 606←505 66 a-type transitions assigned 606←505 E 624←523 606←505 A 625←524 A A E Isomer 1

Camphor-Methanol: Results Internal rotation barrier = 2.4534(21) kJ/mol Isomer 1

PART 2: CAMPHOR-ETHANOL

Camphor-Ethanol 3 conformations of ethanol Gauche ∆E=0.5 kJ/mol Trans Z. Kisiel et al., Phys. Chem. Chem. Phys. 5(2003), 820 Hearn et al., J. Chem. Phys. 123 (2005), 134324

Camphor-Ethanol: Ab initio Results Level of theory: B3LYP-D3/aug-cc-pvtz ∆E≈ 0.6 kJ/mol ∆E≈ 0.7 kJ/mol Isomer 3 Isomer 2 ∆E=0 kJ/mol Isomer 1

Camphor-Ethanol: Experimental Spectrum Ethanol dimer 1, Ethanol dimer 2, Ethanol dimer 3 Isomer 1, Isomer 2, Isomer 3, Isomer 4

Camphor-Ethanol: Experimental Spectrum Isomer 1, Isomer 2, Isomer 3, Isomer 4

Camphor-Ethanol: Results Isomer 1

Camphor-Ethanol: Results Isomer 2

Camphor-Alcohol: Summary Camphor-methanol Camphor-ethanol Isomer 1 Isomer 1 Isomer 2 Only gauche conformation of ethanol was found. No internal rotation in camphor-ethanol. 3 1 2 ROLE OF DISPERSION INTERACTION???

Camphor-Ethanol (Isomer 1) Camphor-Ethanol (Isomer 2) Symmetry Adapted Perturbation Theory Eint = EAB - EA - EB Energy Decompositions (kJ/mol ) from a SAPT(0)/jun-cc-pVDZ (Water)2 Camphor-Water Camphor-Methanol (Isomer 1) Camphor-Ethanol (Isomer 1) Camphor-Ethanol (Isomer 2) ∆Eelst -8.90 -49.2 -49.4 -46.79 -46.6 ∆Eind -2.40 -14.6 -13.3 -13.2 ∆Edisp -1.35 -11.6 -19.6 -20.4 ∆Eexch 8.17 43.6 43.7 47.4 48.7 ∆Etot -4.47 -31.8 -31.9 -32.4 -31.6

Conclusion and Outlook The extent of hydrogen bonding is decreasing while the dispersion interaction is increasing. To identify complexes of camphor ethanol. Further work on camphor-propanol complexes will be done to see the effect of dispersion interactions.

Acknowledgements

THANK YOU