Volume 85, Issue 1, Pages (July 2003)

Slides:



Advertisements
Similar presentations
Bilayer Edges Catalyze Supported Lipid Bilayer Formation
Advertisements

Volume 89, Issue 1, Pages (July 2005)
Volume 90, Issue 10, Pages (May 2006)
Madoka Suzuki, Hideaki Fujita, Shin’ichi Ishiwata  Biophysical Journal 
Volume 96, Issue 4, Pages (February 2009)
Volume 74, Issue 1, Pages (January 1998)
Kenan Xie, Yuehua Yang, Hongyuan Jiang  Biophysical Journal 
Characterizing Cell Adhesion by Using Micropipette Aspiration
Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy 
Bilayer Edges Catalyze Supported Lipid Bilayer Formation
Antonio Cruz, Luis Vázquez, Marisela Vélez, Jesús Pérez-Gil 
Volume 90, Issue 10, Pages (May 2006)
Differential Dynamics of Platelet Contact and Spreading
Volume 92, Issue 8, Pages (April 2007)
Kinetics of Membrane Adhesion Mediated by Ligand–Receptor Interaction Studied with a Biomimetic System  Alexei Boulbitch, Zeno Guttenberg, Erich Sackmann 
Volume 96, Issue 4, Pages (February 2009)
Single Vesicle Assaying of SNARE-Synaptotagmin-Driven Fusion Reveals Fast and Slow Modes of Both Docking and Fusion and Intrasample Heterogeneity  Sune.
Scanning Near-Field Fluorescence Resonance Energy Transfer Microscopy
Agata Witkowska, Reinhard Jahn  Biophysical Journal 
Masataka Chiba, Makito Miyazaki, Shin’ichi Ishiwata 
Laurent Limozin, Kheya Sengupta  Biophysical Journal 
Volume 94, Issue 12, Pages (June 2008)
Volume 99, Issue 8, Pages (October 2010)
Modulating Vesicle Adhesion by Electric Fields
Stefan Nehls, Andreas Janshoff  Biophysical Journal 
Fiber-Dependent and -Independent Toxicity of Islet Amyloid Polypeptide
Giant Unilamellar Vesicles Formed by Hybrid Films of Agarose and Lipids Display Altered Mechanical Properties  Rafael B. Lira, Rumiana Dimova, Karin A.
Volume 110, Issue 10, Pages (May 2016)
Khaled Machaca, H. Criss Hartzell  Biophysical Journal 
Cell Movement Is Guided by the Rigidity of the Substrate
Gel-Assisted Formation of Giant Unilamellar Vesicles
Kinesin Moving through the Spotlight: Single-Motor Fluorescence Microscopy with Submillisecond Time Resolution  Sander Verbrugge, Lukas C. Kapitein, Erwin.
Direct Visualization of Lipid Domains in Human Skin Stratum Corneum's Lipid Membranes: Effect of pH and Temperature  I. Plasencia, L. Norlén, L.A. Bagatolli 
Cell Surface Topography Is a Regulator of Molecular Interactions during Chemokine- Induced Neutrophil Spreading  Elena. B. Lomakina, Graham Marsh, Richard E.
Membrane Hemifusion Is a Stable Intermediate of Exocytosis
Topographical Pattern Dynamics in Passive Adhesion of Cell Membranes
V.P. Ivanova, I.M. Makarov, T.E. Schäffer, T. Heimburg 
Volume 111, Issue 12, Pages (December 2016)
Obstructed Diffusion in Phase-Separated Supported Lipid Bilayers: A Combined Atomic Force Microscopy and Fluorescence Recovery after Photobleaching Approach 
Annette Kloboucek, Almuth Behrisch, Jan Faix, Erich Sackmann 
Scanning Force Microscopy at the Air-Water Interface of an Air Bubble Coated with Pulmonary Surfactant  D. Knebel, M. Sieber, R. Reichelt, H.-J. Galla,
Volume 99, Issue 8, Pages (October 2010)
Volume 84, Issue 3, Pages (March 2003)
Volume 95, Issue 9, Pages (November 2008)
Chang-Chun Lee, Yen Sun, Huey W. Huang  Biophysical Journal 
Volume 78, Issue 1, Pages (January 2000)
Volume 102, Issue 1, Pages (January 2012)
Spontaneous Formation of Two-Dimensional and Three-Dimensional Cholesterol Crystals in Single Hydrated Lipid Bilayers  Roy Ziblat, Iael Fargion, Leslie.
M. Müller, K. Katsov, M. Schick  Biophysical Journal 
Venkat Maruthamuthu, Margaret L. Gardel  Biophysical Journal 
Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy  R.E. Mahaffy, S. Park, E. Gerde, J.
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Simultaneous Topography and Recognition Imaging Using Force Microscopy
Volker Kiessling, Marta K. Domanska, Lukas K. Tamm  Biophysical Journal 
Lipid Asymmetry in DLPC/DSPC-Supported Lipid Bilayers: A Combined AFM and Fluorescence Microscopy Study  Wan-Chen Lin, Craig D. Blanchette, Timothy V.
Jens H. Kroeger, Firas Bou Daher, Martin Grant, Anja Geitmann 
Volume 98, Issue 1, Pages (January 2010)
Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers  Semen Yesylevskyy, Siewert-Jan.
Mikyung Han, Yuan Mei, Htet Khant, Steven J. Ludtke 
Christina Ketchum, Heather Miller, Wenxia Song, Arpita Upadhyaya 
John E. Pickard, Klaus Ley  Biophysical Journal 
Volume 94, Issue 7, Pages (April 2008)
Laurent Limozin, Kheya Sengupta  Biophysical Journal 
Volume 98, Issue 9, Pages (May 2010)
Madoka Suzuki, Hideaki Fujita, Shin’ichi Ishiwata  Biophysical Journal 
Probing the Endocytic Pathway in Live Cells Using Dual-Color Fluorescence Cross- Correlation Analysis  Kirsten Bacia, Irina V. Majoul, Petra Schwille 
Electroformation of Giant Vesicles from an Inverse Phase Precursor
Volume 108, Issue 8, Pages (April 2015)
Evidence of Cholesterol Accumulated in High Curvature Regions: Implication to the Curvature Elastic Energy for Lipid Mixtures  Wangchen Wang, Lin Yang,
Jocelyn Étienne, Alain Duperray  Biophysical Journal 
Presentation transcript:

Volume 85, Issue 1, Pages 646-655 (July 2003) Functional Incorporation of Integrins into Solid Supported Membranes on Ultrathin Films of Cellulose: Impact on Adhesion  Stefanie Goennenwein, Motomu Tanaka, Bin Hu, Luis Moroder, Erich Sackmann  Biophysical Journal  Volume 85, Issue 1, Pages 646-655 (July 2003) DOI: 10.1016/S0006-3495(03)74508-1 Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 1 (a) Cryo-electron micrograph of reconstituted integrin αIIbβ3 receptors in DMPC/DMPG vesicles. The black protrusions in the vesicles membranes correspond to integrins. (b) Schematic illustration of the lipid vesicle containing integrin receptors, where the large extracellular parts are exposed on both sides of the membrane. The picture is drawn to scale. Biophysical Journal 2003 85, 646-655DOI: (10.1016/S0006-3495(03)74508-1) Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 2 (a) Fluorescence micrograph of a membrane containing labeled integrins on a bare glass substrate. (b) Side view of the solid supported membrane. Biophysical Journal 2003 85, 646-655DOI: (10.1016/S0006-3495(03)74508-1) Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 3 (a) Fluorescence micrograph of an integrin-doped membrane on a cellulose film. (b) Schematic drawing of the polymer cushioned membrane viewed from the side. Biophysical Journal 2003 85, 646-655DOI: (10.1016/S0006-3495(03)74508-1) Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 4 (a) Fluorescence recovery after photobleaching (FRAP) curves of supported membranes containing labeled integrin. The gray circles correspond to the fluorescence signals from a membrane deposited directly on a bare glass substrate, whereas the black squares indicate the recovery curve of a membrane supported on a cellulose film (as depicted in the insets). For the membrane on the polymer cushion the percentage of fluorescence recovery is 25%. (b) The recovery curve obtained after another bleaching pulse applied to the same sample position. The recovery attains 86%. Biophysical Journal 2003 85, 646-655DOI: (10.1016/S0006-3495(03)74508-1) Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 5 (a) Fluorescence micrograph of the labeled RGD peptides bound to integrin-doped membrane supported on a cellulose cushion. (b) Schematic presentation of the side view of the membrane, where synthetic ligands bind only to the integrins pointing their extracellular headgroup into the aqueous phase. Biophysical Journal 2003 85, 646-655DOI: (10.1016/S0006-3495(03)74508-1) Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 6 (a) Reflection interference contrast microscopy (RICM) image of a giant vesicle containing 1% RGD lipid and 2% PEG lipid adhering to a membrane with integrin αIIbβ3. The membrane is supported by a cellulose cushion. The dark areas indicate strongly adhered patches. Newton fringes around the contact area show lines of equal height of the membrane above the surface. (b) Intensity profile along the straight line indicated in the interferogram. (c) The local height profile shown is reconstructed from the intensity profile. The contact angle α and the characteristic capillary length λ are defined in the height profile. The zero point of the x axis (x=0) is determined by the onset of the upward deflection of the membrane from the substrate. Biophysical Journal 2003 85, 646-655DOI: (10.1016/S0006-3495(03)74508-1) Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 7 (a) RICM interferogram of a giant vesicle with 1% RGD lipid and 2% PEG lipid adhering to an integrin-doped membrane on a bare glass substrate (integration time 59ms). The arrows indicate the strongly adhering (dark) area, whereas the main area of the adhesion disc adheres only weakly (light areas) and exhibits strong flickering. (b) RICM image of the same giant vesicle taken with a prolonged integration time of 5s. Due to the motion of the contact area, the vesicle exhibits a bleary appearance. Biophysical Journal 2003 85, 646-655DOI: (10.1016/S0006-3495(03)74508-1) Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 8 Measurement of membrane tension γ, contact angle α (circles) and free adhesion energy densities Δgad (squares) at sites of strong (black regions) and weak (light regions) adhesion near the rim of the adhesion disc. Biophysical Journal 2003 85, 646-655DOI: (10.1016/S0006-3495(03)74508-1) Copyright © 2003 The Biophysical Society Terms and Conditions

Figure 9 Histograms of measured values of free energies of adhesion of vesicles containing 2 and 3mol % of repeller lipids (PEG lipids) on cellulose (black and dotted lines, respectively) and of vesicles containing 2mol % PEG lipids on bare glass substrates (gray lines). Note that the largest value correspond to regions of tight adhesion, whereas the lowest values correspond to the spreading pressures of the regions of weak adhesion. Biophysical Journal 2003 85, 646-655DOI: (10.1016/S0006-3495(03)74508-1) Copyright © 2003 The Biophysical Society Terms and Conditions