 s(E) = S(E) e–2ph E-1 s Nuclear Burning in Stars s(Estar) s

Slides:



Advertisements
Similar presentations
 s(E) = S(E) e–2ph E-1 s Laboratory for Underground
Advertisements

Carlo Broggini, INFN-Padova Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 2 cm m m m m Astrophysical Factor Gamow Factor Reaction Rate(star)
Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 Reaction Rate(star) (E) (E) dE Gamow Peak Maxwell Boltzmann Extrap.Meas. LUNA results Men in.
LUNALUNA Nucleosintesi stellare (E star ) (E) = S(E)/E e –2 2 cm m m m m Fattore astrofisico Interazioni(stella) (E) (E) dE Picco di Gamow Maxwell Boltzmann.
NuPECC - Milan Present and future of Laboratory Underground Nuclear Astrophysics Alba Formicola - Status of the D(, ) 6 Li measurement -Status of.
Nuclear Astrophysics Experiments in ATOMKI Gy. Gyürky Institute of Nuclear Research (ATOMKI) Debrecen, Hungary.
Methods to directly measure non-resonant stellar reaction rates
Underground Measurement of the 17O+p Reactions
Carlo Broggini, INFN-Padova Nuclear Burning in Stars  (E star )  ( E ) = S(E) e –2   E -1 2       m  m   m   m 
7TH INTERNATIONAL SUMMER SCHOOL ON PARTICLE ACCELERATORS AND DETECTORS, BODRUM, AUGUST Nuclear Astrophysics Applications of Accelerators Alex.
1 Some key problems and key reactions in Nuclear Astrophysics Main issues: BBN: was the universe always the same? What’s in the core of Sun and other MS.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS N UCLEAR S CIENCE L ABORATORY Research:Stellar Burning – nuclear reactions with stable beams Explosive.
Stuttgart Dynamitron at Bucharest - Perspectives and New Activities
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
The LUNA experiment: direct measurement of thermonuclear cross sections of astrophysical interest Alessandra Guglielmetti Universita’ degli Studi di Milano.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Gianluca Imbriani Physics Department of University of Naples Federico II, Italian National Institute of Nuclear Physics (INFN) and Joint Institute of Nuclear.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
ESF Workshop on The future of stable beams in Nuclear Astrophysics, Athens, Dec , 2007 Stable ion beams for nuclear astrophysics: Where do we stand.
Electron screening: can metals simulate plasmas? Marialuisa Aliotta School of Physics - University of Edinburgh International Workshop XXXIV on Gross Properties.
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Astroparticle physics 1. stellar astrophysics and solar neutrinos Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica Tonantzintla,
Experimental Nuclear Astrophysics: Key aspects & Open problems Marialuisa Aliotta School of Physics University of Edinburgh Nuclear Physics Autumn Retreat.
Indirect Techniques ( I) : Asymptotic Normalization Coefficients and the Trojan Horse Method NIC IX R.E. Tribble, Texas A&M University June, 2006.
October 14th, 2006LONU-LENS, Virginia Tech Solar Luminosity by Neutrinos Solar Luminosity by Neutrinos Carlos Pena Garay IFIC, Valencia ~
1/38 Laboratory Underground Nuclear Astrophysics The D( 4 He,  ) 6 Li reaction at LUNA and the Big Bang Nucleosynthesis Carlo Gustavino For the LUNA collaboration.
L’esperimento LUNA- CdS MI luglio 2012 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics.
NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA D. Trezzi (for the LUNA collaboration) Università degli Studi di Milano | INFN – New Vistas in Low-Energy.
The LUNA experiment at Gran Sasso Laboratory: studying stars by going underground Alessandra Guglielmetti Università degli Studi di Milano and INFN, Milano,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Solar neutrino physics The core of the Sun reaches temperatures of  15.5 million K. At these temperatures, nuclear fusion can occur which transforms 4.
Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Hydrogen-burning reactions at astrophysically relevant energies Laboratory Underground Nuclear.
Laboratori Nazionali del Gran Sasso. Stefano Ragazzi – INFN LNGS & UNIMIB 3400 m.w.e. 1.1 μ / (m 2 h) Muon flux: m -2 s -1 Neutron flux: 2.92.
Modified r-matrix analysis of the 19F(p,a)16O HOES reaction
22Ne(a,n)25Mg status and perspectives (for an underground experiment)
 s s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Nuclear Astrophysics at LUNA and the Big Bang Nucleosynthesis
University of Colorado
L’esperimento LUNA- CdS MI giugno 2013
Electron Screening in Metals
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI luglio 2017
György Gyürky Institute for Nuclear Research (Atomki)
Stars, Accelerators and Underground Laboratories
Why going underground g-background
Solutions.
Zs. Fülöp ATOMKI, Debrecen, Hungary
The scientific program for the first five years of LUNA-MV
the s process: messages from stellar He burning
Stato dell'esperimento LUNA
Laboratory for Underground Nuclear Astrophysics
status and perspectives
Alessandra Guglielmetti Universita’ degli Studi di Milano and
Underground Astrophysics at Surface Facilities: the Atomki case
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
The D(4He,)6Li reaction at LUNA and the Big Bang Nucleosynthesis
V riunione nazionale di astrofisica nucleare
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI giugno 2015
 s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Carbon, From Red Giants to White Dwarfs
Minnesota Institute for Astrophysics
Chapter 9 The Main Sequence.
BBN, neutrinos and Nuclear Astrophysics
7Be neutrino line shifts in the sun.
Solar p-p chain and the 7Be(p,)8B S-factor
Presentation transcript:

 s(E) = S(E) e–2ph E-1 s Nuclear Burning in Stars s(Estar) s LUNA and the neutrinos from the Sun Carlo Broggini, INFN-Padova Men in pits or wells sometimes see the stars…. Aristotle Nuclear Burning in Stars s(Estar) s(E) = S(E) e–2ph E-1 2ph = 31.29 Z1Z2 m/E  Reaction Rate(star)  F(E) s(E) dE m = m1m2 / (m1+m2) Gamow Peak Extrap. Meas. s Maxwell Boltzmann s

Laboratory for Underground Nuclear Astrophysics

LUNA1 ( 50 kV) LUNA2 (400 kV) Voltage Range :50-400 kV Voltage Range : Output Current: 1 mA (@ 400 kV) Absolute Energy error ±300 eV Beam energy spread: <100 eV Long term stability (1 h) : 5 eV Terminal Voltage ripple: 5 Vpp Ge detector Voltage Range : 1 - 50 kV Output Current: 1 mA Beam energy spread: 20 eV Long term stability (8 h): 10-4 Terminal Voltage ripple: 5 10-5

pp chain p + p  d + e+ + ne d + p  3He + g 3He +3He  a+2p 3He +4He  7Be + g 7Be+e- 7Li + g +ne 7Be + p  8B + g 7Li + p  a + a 8B 2a + e++ ne 84.7 % 13.8 % 13.78 % 0.02% pp chain

F  S34 3He(,g)7Be Solar Neutrinos: 7Be,8B BBN 7Li Q=1.6 MeV Cross section from prompt gamma using 4He beam on 3He target from off-line radioactive decay of the 7Be atoms collected in the beam catcher All with a final error < 5 %

s down to 93 keV S34(0) = 0.560  0.017 keV barn 7Be ≈ prompt g ΔΦ(B) reduced from 12% to 10% (C. Pena-Garay) ΔΦ(Be) reduced from 9.4% to 5.5% Borexino-Kamland

F  Globular Cluster Age S1,14 14N(p,g)15O cno cno  Q=7.3 MeV 278 7556 1/2 + 14N(p,g)15O 7297 7276 7/2 + 14N+p 6859 5/2 + -21 6793 Q=7.3 MeV 3/2 + - 504 6176 3/2 -  F S1,14 5241 5/2 + cno  cno 5183 1/2 + Globular Cluster Age 15O 1/2 -

solar core metallicity homogeneous zero-age Sun St(0)=1.61±0.18 keV b * ½cno from the Sun * Globular cluster age * C yield in AGB stars New study with a ‘clover’ detector of the capture to the ground state St(0)=1.57±0.13 keV b (to be published in PRC) From a measurement of cno from the Sun solar core metallicity homogeneous zero-age Sun

............ Rich program of Nuclear Astrophysics: 25Mg(p,g)26Al Q=6.3 MeV (almost completed) 2H(α,g)6Li Q=1.47 MeV 17O(p,g)18F Q=5.6 MeV 18O(p,g)19F Q=8.0 MeV 22Ne(p,g)23Na Q=8.8 MeV 23Na(p,g)24Mg Q=11.7 MeV 15N(p,g)16O Q=12.13 MeV (already started) ............

3He (3He,2p)4He: s down to 16 keV no resonance within the solar Gamow Peak 3He(,g)7Be: 7Be ≈ prompt g ΔΦ(Be) reduced from 9.4% to 5.5% 14N(p,g)15O: s down to 70 keV (T=60 T6) cno reduced by  2 with 8% error core metallicity Globular cluster age increased by 0.7-1 Gy Higher C yield in AGB stars

New underground accelerators: Gran Sasso, DUSEL, Boulby mine, Canfranc, Romania… 12C(a,g)16O 13C(a,n)16O 22Ne(a,n)25Mg (a,g) on 14N, 15N, 18O……

LUNA INFN - Laboratori Nazionali del Gran Sasso D.Bemmerer,R.Bonetti,C.Broggini, A.Caciolli,F.Confortola,P.Corvisiero, H.Costantini, Z.Elekes, A.Formicola, Z. Fülöp, G.Gervino,A.Guglielmetti, C.Gustavino, G. Gyurky, G. Imbriani, M.Junker, A.Lemut, B.Limata, V.Lozza,M.Marta,R.Menegazzo, P.Prati, V.Roca, C.Rolfs, M.Romano, C.RossiAlvarez, O.Straniero, F.Strieder, E.Somorjai,F.Terrasi, H.P.Trautvetter •INFN : Genova, LNGS, Milano, Napoli, Padova, Torino •Inst.Physik mit Ionenstrahlen, Ruhr-Universität Bochum •Forschungszentrum Dresden-Rossendorf •Atomki Debrecen