Born-Haber Cycles ΔHat (Na(s)) 109 kJ mol-1 Bond dissociation (Cl2(g)) The Born-Haber cycle is an enthalpy level diagram breaking down the formation of an ionic compound using simpler steps. The Born-Haber cycle can be used to find an unknown enthalpy value by applying Hess’s law Example: Calculate ΔHꝋlatt for Na+(g) + Cl-(g) ΔHat (Na(s)) 109 kJ mol-1 Bond dissociation (Cl2(g)) 121 kJ mol-1 First ionisation energy (Na) 494 kJ mol-1 First electron affinity (Cl) -364 kJ mol-1 ΔHf (NaCl(s)) -411 kJ mol-1
Na+(g) + e- + Cl(g) enthalpy Na+(g) + e- + ½Cl2(g) Na+(g) + Cl-(g) Bond Dissociation(Cl2) 1st Electron Affinity (Cl) enthalpy Indirect route Na+(g) + e- + ½Cl2(g) Na+(g) + Cl-(g) 1st Ionisation (Na) Na(g) + ½Cl2(g) ∆Hlatt ∆Hat (Na) Direct Route Na(s) + ½Cl2(g) ∆Hf NaCl(s)
First ionisation energy (Mg) 736 kJ mol-1 Draw a Born-Haber cycle for magnesium oxide and use it to calculate the 2nd electron affinity of O ΔHat (Mg(s)) 150 kJ mol-1 ΔHat (O2(g)) 248 kJ mol-1 First ionisation energy (Mg) 736 kJ mol-1 Second ionisation energy (Mg) 1450 kJ mol-1 First electron affinity (O) -142 kJ mol-1 ΔHf (MgO(s)) -602 kJ mol-1 ΔHꝋlatt (MgO(g)) 3889 kJ mol-1
Mg2+(g) + 2e- + O(g) Mg2+(g) + O2-(g) enthalpy Mg2+(g) + 2e- + ½O2(g) Bond Dissociation(O2) Mg2+(g) + O2-(g) 1st Electron Affinity (O) 2dn Electron Affinity (O) Mg2+(g) + 2e- + ½O2(g) Mg2+(g) + O-(g) 2nd ionisation (Mg) Mg+(g) + e- + ½O2(g) 1st ionisation (Mg) Mg(g) + ½O2(g) ∆Hlatt ∆Hat (Mg) Mg(s) + ½O2(g) ∆Hf MgO(s)
First ionisation energy (Ca) 590 kJ mol-1 Using the values given in the table below, construct a Born-Haber cycle and calculate the ΔHꝋlatt for CaF2 ΔHat (Ca(s)) 179 kJ mol-1 ΔHat (F2(g)) 158 kJ mol-1 First ionisation energy (Ca) 590 kJ mol-1 Second ionisation energy (Ca) 1150 kJ mol-1 First electron affinity (F) -348 kJ mol-1 ΔHf (CaF2(s)) -1220 kJ mol-1
Ca2+(g) + 2e- + 2F(g) enthalpy Ca2+(g) + 2e- + F2(g) Ca2+(g) + 2F-(g) Bond Dissociation 1st Electron Affinity Ca2+(g) + 2e- + F2(g) Ca2+(g) + 2F-(g) 2nd ionisation Ca+(g) + e- + F2(g) 1st ionisation Ca(g) + F2(g) ∆Hlatt ∆Hat Ca(s) + F2(g) ∆Hf CaF2(s)