Measuring the speed of radioactive decay

Slides:



Advertisements
Similar presentations
7.2 Half-life.
Advertisements

It can be difficult to determine the ages of objects by sight alone. e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity.
By: HULK And Bruce Banner
HALF-LIFE Chapter 7.2 – BC Science 10.
Absolute Dating of Rocks and Strata
Radioactivity Lab Prompt
1 Radioactivity and Half-Life. 2 Radioactivity An unstable atomic nucleus emits a form of radiation (alpha, beta, or gamma) to become stable. In other.
7.2 Half-Life the time it takes for half of a radioactive sample to decay is a constant rate (always the same half life for each element) Example: Strontium-90.
7.2 Half-life.
Radioisotopes, and their use in “dating” rocks. Radioactive Decay Certain isotopes of some elements are not stable. They naturally change (decay) over.
(c) McGraw Hill Ryerson Half-life It can be difficult to determine the ages of objects by sight alone.  Radioactivity provides a method to determine.
(c) McGraw Hill Ryerson Half-life It can be difficult to determine the ages of objects by sight alone.  Radioactivity provides a method to determine.
RADIOCARBON DATING Students will: understand the half-life of an isotope.
Carbon Dating The age of a formerly living thing can be determined by carbon dating As soon as a living organism dies, it stops taking in new carbon.
Chapter 7.2 – Half life Science 10. Types of decay Alpha Alpha.
Radiometric Dating Chapter 18 Geology. Absolute Dating Gives a numerical age Works best with igneous rocks difficult with sedimentary rocks Uses isotopes.
4/27/2017 Isotopes and Half Life
 Half-life – the time it takes for ½ of a radioactive sample to decay  Half-life for a radioactive element is a constant rate of decay  Half-life differs.
7.2: Using Radioactivity to Determine Age. How old is it? How do scientists guess how old things are? How do scientists guess how old things are? One.
Unit 2 Lesson 3 Absolute Dating
The shorter the half-life, the faster the decay rate.
Ch.3, Sec.3 – Absolute Dating: A Measure of Time
By stating that rock unit A is older than rock unit B, we are
Radioactive Decay.
Radioactive Decay.
Chapter 6.3 Absolute Dating
Radio-dating.
Nuclear Transformations
EARTH’S HISTORY RADIOMETRIC DATING
EARTH’S HISTORY RADIOMETRIC DATING
Absolute Dating.
I. Absolute Dating A. The process of establishing the age of an object (fossil or rock layer) by determining how long it existed.
Absolute Dating Radioactive Dating.
Measuring the speed of radioactive decay
It can be difficult to determine the ages of objects by sight alone.
7.2 Half-life.
Chemistry Do Now Directions: Take out your Do Now sheet and begin.  
AC Vocabulary Chapter 6 Section 3
Radioactive Dating Calculating the age of a sample based
Bellwork is on your notes today!!!!!
Review: Types of decay 1. Alpha.
Half-life PowerPoint 7.2.
Half-Life 7.2.
Radioactivity provides a method to determine the age of a material
Unit 1: Radio Activity Lesson 2: Half-Life
7.2 Half Life Half Life: the constant rate at which radioactive isotopes naturally decay. This rate refers to the time it takes for half of the nuclei.
Uranium has an atomic number greater than
Absolute Dating.
Geologic Time and Earth History Part 2 – Absolute Age
Rate of Radioactive Decay
7.2 What is Half Life? Half Life is the time required for half of the radioactive sample to decay. (c) McGraw Hill Ryerson 2007.
Radioactivity.
Half Life.
Radiometric Dating “clocks in rocks”
The Fossil Record.
Unit 2 Lesson 3 Absolute Dating
Absolute Dating.
Absolute Dating.
Absolute Dating.
Absolute Dating Write on right side.
Absolute Age of Rocks Notes
Measuring the speed of radioactive decay
Rate of Radioactive Decay
Absolute Age Dating.
Radioactive Decay.
Absolute Dating.
Radioactive Dating.
Radio-dating.
7.2 Half-Life.
Half Life and Radioactive Decay
Presentation transcript:

Measuring the speed of radioactive decay Half-life Measuring the speed of radioactive decay

Half-life = the amount of time it takes for ½ of the amount of parent isotope to decay into the daughter product. Example: 226 88 Ra  222 86 Rn + 4 2 a Half-life would = the amount of time it takes for 10 g of Ra to decay to 5 grams of Ra

Why do we care? It can be difficult to determine the ages of objects by sight alone e.g. It can be difficult to tell which students in a classroom are oldest. Radioactivity provides a method to determine age by comparing the relative amount of remaining radioactive material to the amount of stable products formed = called radio-dating

The Importance of Carbon - All life is Carbon Based - Carbon has two isotopes - C-14 = radioactive - C-12 = stable (~98.9% of Carbon atoms)

Carbon dating measures the ratio of carbon-12 and carbon-14. When an organism dies, carbon-14 stops being consumed and that in the organism slowly decays. Measuring the relative amounts of carbon-12 : carbon-14 is called radiocarbon dating. C-14 has a Half-life of 5730 years We can calculate the C-12:C-14 ratio for up to 10 half-lives So radiocarbon dating can be used to provide the age of any organism or organic material… less than 50 000 years old Using radiocarbon dating, these cave paintings of horses, from France, were determined to have been drawn 30 000 years ago.

Half-life measures the rate of radioactive decay Half-life = time required for half of a radioactive sample to decay. The half life for a radioactive element is a constant rate of decay. e.g. Strontium-90 has a half-life of 29 years. If you have 10 g of strontium-90 today, there will be 5 g remaining in 29 years. Half-lives of many common radioisotopes are listed on pg.4 of your data booklet.

When using your table of radioisotopes you must consider: Parent isotope = the original, radioactive material. Daughter isotope = the stable product of the radioactive decay. The rate of decay remains constant, but some elements require one step to decay, while others decay over many steps before reaching a stable daughter isotope. Carbon-14 decays into nitrogen-14 in one step Uranium-235 decays into lead-207 in fifteen steps. Thorium-235 decays into lead-208 in ten steps.

Example: Watch the decay of a 50.0 g radioactive sample of C-14 After 2nd half-life After 1st half-life 12.5 g 6.25 g After 5th half-life 3.125 g After 3rd half-life After 4th half-life 1.625 g Remember: Every time a half-life passes half of a radioactive sample decays (i.e. is reduced by a half!)

Decay curves Decay curves show the rate of decay for radioactive elements. The curve shows the relationship between half- life and percentage of original substance remaining.

Back to our Example… After 2nd half-life After 1st half-life After 5th half-life After 4th half-life After 3rd half-life Half-life 1 2 3 4 5 Time 5730 11460 17190 22920 28650 Amount (g) Percentage (%) 50.0 100% 25.0 50% 12.5 6.25 3.125 1.625 25% 12.5% 6.25% 3.125%

Graphing our Example: Mass vs. Half-life Mass of Sample (g) Half-lives This type of graph is called an Exponential Decay graph--- it decreases very quickly to start with and approaches zero after a long time (~10 half-lives)

Graphing our Example: % Remaining vs. Time Percentage of Sample (%) Time (years) Notice: It doesn’t matter which method you use to plot the data, the shape of the curve is the same!

So why is C-14 dating only useful for samples less than 50000 years? Mass of Sample (g) Time (years) Note: After about 10 half-lives (for Carbon-14 approximately 50000 years) there is so little sample remaining that you cannot measure it accurately enough!

The Potassium-40 Clock Radioisotopes with very long half-lives can help determine the age of very old things. The potassium-40/argon-40 clock has a half-life of 1.3 billion years. Argon-40 produced by the decay of potassium-40 becomes trapped in rock. Ratio of potassium-40 : argon-40 shows age of rock.

PRACTICE 1 2 3 4 Complete the following tables HALF-LIFE Percent of Parent Isotope Percent of Daughter Isotope 100 1 50 2 25 75 3 12.5 87.5 4 6.25 93.75 Complete the following tables

PRACTICE 1 1/2 2 1/4 3/4 3 1/8 7/8 4 1/18 15/16 HALF-LIFE Fraction of Parent Isotope Fraction of Daughter Isotope 1 1/2 2 1/4 3/4 3 1/8 7/8 4 1/18 15/16

A rock sample contains 120 grams of radioactive isotope A rock sample contains 120 grams of radioactive isotope. The radioactive Isotopes has a half-life of 5 years. HALF-LIFE Time Mass 120 1 5 60 2 10 30 3 15 4 20 7.5 25 3.75

How much of the radioactive isotope if left after 25 years have passed? 3.75 How many half-lives have passed if there is only 15 g of the parent isotope left? 3 half-lives How many years have passed if there is only 7.5 g of the parent isotope left? 20 years