Simulation Calculations

Slides:



Advertisements
Similar presentations
First Steps XFEL S2E with CSRtrack Convert elegant particlefile upstream of BC-3 into CSRtrack input CSRtrack results.
Advertisements

Nominal and no CSR (R 56-1 = 55 mm, R 56-2 = 59 mm, R 56-3 = 0) L1 phase = 21 deg, V 3.9 = 55 MV CSR OFF BC3 OFF Elegant Tracking  z1 = mm (post.
BC System – Review Options ● BC2 working point (energy-charge-compr.) ● 2BC (rf-rf-bc-rf-bc-rf) ● table: 2BC (rf-rf-bc-rf-bc-rf) dogleg + 2BC (rf-dog-rf-rf-bc-rf-bc-rf)
Beam Dynamics in MeRHIC Yue Hao On behalf of MeRHIC/eRHIC working group.
Radiation Physics | ELBE | SRF Photo Injector for Electron- Laser Interaction LA 3 NET conference: Laser applications at accelerators, Mallorca,
Cavity Field Maps (TESLA & 3 rd Harmonic Cavity) Undulator Wakes Estimation of CSR Effects for FLASH2HGHG.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
F Specifications for the dark current kicker for the NML test facility at Fermilab S. Nagaitsev, M. Church, P. Piot, C.Y. Tan, J. Steimel Fermilab May.
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg FEL driver linac operation with very short electron bunches.
Review of the European XFEL Bunch Compression System Summary Torsten Limberg.
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012.
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
Collective Effects in the Driver of the Wisconsin Free-Electron Laser (WiFEL) Robert Bosch, Kevin Kleman and the WiFEL team Synchrotron Radiation Center.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Simulation of Microbunching Instability in LCLS with Laser-Heater Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
SFLASH  SASE interference setup & optics rough estimation 1d estimation 3d estimation summary.
Optics with SC horizontal vertical BC0BC1BC2 XFEL, design optics.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
J. Wu J. Wu working with T.O. Raubenheimer, J. Qiang (LBL), LCLS-II Accelerator Physics meeting April 11, 2012 Study on the BC1 Energy Set Point LCLS-II.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
LCLS-II Particle Tracking: Gun to Undulator P. Emma Jan. 12, 2011.
S2E (start-to-end) Simulations at DESY T. Limberg TESLA Collaboration Meeting in Frascati, May 2003.
The Microbunching Instability in the LCLS-II Linac LCLS-II Planning Meeting October 23, 2013 A. Marinelli and Z. Huang.
Computational Needs for the XFEL Martin Dohlus DESY, Hamburg.
T. Atkinson*, A. Matveenko, A. Bondarenko, Y. Petenev Helmholtz-Zentrum Berlin für Materialien und Energie The Femto-Science Factory: A Multi-turn ERL.
X-band Based FEL proposal
Microbunching Instability and Slice Energy Spread
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
LSC/CSR Instability Introduction (origin of the instability) CSR/LSC
Multi-bunch Operation for LCLS, LCLS_II, LCLS_2025
A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Robert Bosch, Kevin Kleman and the WiFEL team
Sara Thorin, MAX IV Laboratory
Cutting Beam Horns in BC1
Slice Parameter Measurements at the SwissFEL Injector Test Facility
Short pulse, low charge LCLS operation
X-band FEL beam dynamics issues
XFEL Beam Physics 10/30/2015 Tor Raubenheimer.
Linac optimisation for the New Light Source
Thermal emittance measurement Gun Spectrometer
Review of Application to SASE-FELs
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
XFEL Bunch Compression System Tuning
LCLS Longitudinal Feedback and Stability Requirements
Laser assisted emittance exchange to reduce the X-ray FEL size
G. Marcus, Y. Ding, J. Qiang 02/06/2017
calculation with 107 particles
Z. Huang LCLS Lehman Review May 14, 2009
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Selected simulations for XFEL photo injector
Linac/BC1 Commissioning P
Design of Compression and Acceleration Systems Technical Challenges
LCLS Tracking Studies CSR micro-bunching in compressors
Modified Beam Parameter Range
Laser Heater Integration into XFEL. Update.
Gain Computation Sven Reiche, UCLA April 24, 2002
Linac Physics, Diagnostics, and Commissioning Strategy P
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
Bunch Compression Experiment in VUV-FEL BC3
some tools for longitudinal phase space
setups 7 (low E1) 4 modules 3rd h. L = 8m 12 modules rf = 20 deg
Electron Optics & Bunch Compression
New VUV-FEL Simulation results
Bunch Compressor Beam Line Optics
Injector for the Electron Cooler
Presentation transcript:

Simulation Calculations BC System – Review Simulation Calculations ● official setup ● “start to end” simulation technical aspects methods ● sensitivity on rf parameters ● µ-bunch “instability” ● shielding and wall conductivity ● beam loading

official setup Winni’s EXCEL table (Dec 2005) Klaus’s gun & ACC0 settings: 1nC, 50A  slice  0.58 µm (used for s2e simulations)  6.9 MeV 130 MeV, dog leg, laser heater 500 MeV, 3r harm. rf, 50A  1kA, r56  103 mm 2 GeV, on crest, 1kA  5kA, r56  14 (17) mm  17.5 MeV

“start to end” simulation methods ASTRA, (ELEGANT,) CSRtrack, GENESIS tools format conversion, some phase space manipulations, semi-analytic space charge impedance longitudinal predictor (~ LiTrack) tuning longitudinal: rf phases to 0.01 deg, amplitudes to 0.01% semi-analytic space charge impedance steering & matching (at some locations) transverse: additional 180 deg phase advance before BC2 tricks 200000 particles details see FLS2006: http://adweb.desy.de/mpy/FLS2006/proceedings/TALKS/WG314_TALK.PDF

method 1 (fast) method 2 (reference) ASTRA CSRtrack 1d transport matrix GENESIS rf-field cavity wake & s.c. field 8 h 20 min 30 min 30 min sec…min (steady state) PC (Pentium 4, 3GHz) method 2 (reference) ASTRA CSRtrack sub-bunch ELEGANT GENESIS & sc wake 1.5 h 2 h 30 h 4 h 12 h 3 h h…w (SASE) LINUX cluster with 20 cpus (64 bit)

current & slice emittance method 1 method 2 current & slice emittance

method 1 method 2 long. phase space

sensitivity on rf parameters peak current after BC2 E1/MeV = 500 L1: phi1st/deg = 2.016 V3rd /MV = 91.62 phi3rd/deg = 146.56 E2/MeV = 2000 L2: on crest r56_BC1/mm = 103.26 r56_BC2/mm = 14.060 0.016 deg +10% 0.043 deg phase of LINAC2: 2.7 deg amplitude of LINAC2: 18.5 MV r56 of BC1: 0.1% r56 of BC2: 2.4% bunch charge, Igun = const: 5.3% bunch charge, shape = const: 5.7% Igun, bunch charge = const: 2.9% 170 kV 92 kV with cavity wakes and injector SC effects

without cavity wakes and injector SC effects peak current after BC2 arrival time jitter E1/MeV = 500 L1: phi1st/deg = 2.016 V3rd /MV = 91.62 phi3rd/deg = 146.56 E2/MeV = 2000 L2: on crest r56_BC1/mm = 103.26 r56_BC2/mm = 17.41 / fsec V3rd = 92MV without cavity wakes and injector SC effects

µ-bunch “instability” current energy z r56 1 % 10 % gain = 10 impedance (SC,CSR) increase uncorrelated energy spread: current energy z impedance 1 % energy spread reduced gain r56  ‘laser heater’

slice energy distribution P(E) ‘laser heater’ (LCLS layout) rms = 2 keV (Gaussian) rms = 10 keV (from laser heater) slice energy distribution P(E)

TDR: gaussian distribution gain curves TDR: gaussian distribution rms = 10 keV “real” heater: rms = 10keV after BC1 after BC2 after dogleg shot noise “real” heater: dogleg, r56 = 0.84mm  0 TDR:

TDR: gaussian distribution energy to current modulation: TDR: gaussian distribution rms = 10 keV “real” heater: rms = 10keV after BC1 after BC2 after dogleg ASTRA simulation: 5% modulation at cathode,  = 0.2 mm  injector dogleg (~45m after cathode): 5% current / A s / mm 0.5% cathode after 45m (130 MeV) ~2keV energy / eV

shielding and wall conductivity (same rf settings for all calculations) gap (mm) material peak current (kA) emittance norm., hor. (µm) projected 3d csr & ast.  8 16 10 20 PEC steel cu 5.3 5.18 5.4 12.5 5.7 5.8 5.9 5.6 1.5 1.16 (3) 1.4 8.5 1.7 2.2 2.5 (same orientation of both chicanes) steady state r-wall-wake; see: http://www.desy.de/xfel-beam/data/talks/talks/dohlus_-_rwall_wake_xfel_20060206.pdf

beam loading “short” range long range single- & multi-bunch interaction: systematic & random charge “centroid wakes” bunch energy (centroid)  systematic & random part about beam loading; see: http://www.desy.de/~dohlus/2006.03.psi/beam_loading_02.pdf http://www.desy.de/xfel-beam/data/talks/talks/dohlus_-_beam_loading_20060327.pdf

beam loading: some conclusions systematic beam loading is important comes always to steady state transients not investigated now; (some unknown parameters) random beam loading (by charge fluctuation) main modes: feed back required significant contribution from 3rd harmonic rf transverse deflecting cavities are not considered now self interaction self & multi-bunch interaction; (unknown parameters estimated)